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right, and they have taken on separate and independent ldE'ntltlus —— - '?,’.,?' ‘l,'
\
Volume 2 contains a detailed presentation of the single-processor software programming . \“.
system LNF which was developed to serve as a test bed and simulation tool for the 5“‘.»‘\,- '.:t'
"classical™ part of the SUPER system. .P:'.F:J"’ |::
O
Volume 3 presents the final, enhanced version of LNF, which we call LNF-Plus and which ° ht". .
provides the user with as close an approximation as we can achieve on a single processor R ','
of the SUPER system. bvolume 3 is also designed as a useful guide to someone who wishes ‘o. :I. \.‘
i : 0' "
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In the first third of this thesis, three well known reduction calculi: A. Church’s - ;‘:;... o
calculus, M. Schénfinkel’s SKI-calculus, and C.P. Wadsworth’s graph oriented \-calculus il %ﬁ v
(N\-G-calculus) are defined. Schdnfinkel’s classic transformation of A-calculus well-formed h‘ v,‘:::
| formulas (wfls) into variable-free SKl-calculus wfls is also presented. A new notion, » '&&1‘. "
1 lazy-normal form, a generalization of the SIKI-calculus’ concept of normal form, is then Yt
| defined and compared with Wadsworth's concept of head-normal form. Head-normal .v, -
form is a generalized notion of normal form in the h-calculus. It is demonstrated that an o o.:. :
SKl-calculus wff in lazy-normal form is an outline of the wfl’s normal form (if one exists) A o‘%
— l.e. its normal form will have the same initial atom and the same number of argu- LY Y

ments. Other results relating A-calculus wils in head-normal form to SKI-calculus wfls in
lazy-normal form are stated and proved.

@ @

PLTT
. . N PN AN

The ideas behind M. Schénfinkel’s SII-calculus, C.P. Wadsworth’s \-G-calculus, and P

D.A. Turner’s SASL implementation are combined with the concept of lazy-normal form ;«:&f» Y
to produce a new deterministic combinator based graph and machine oriented reduction f:-’::ﬁ e
calculus: the LNF-calculus. The LNF-calculus is equivalent in power to the \-calculus et ﬁ}jiﬁ'ywm

al,, but is much more directly and efficiently implementable. This is due primarily to e o
the structure sharing properties of the LNF-calculus wffs. Both garbage nodes and for- E‘i:".::»}_;-'_:,-
warding arcs (indirection pointers), concepts that are usually relegated to a calculus’ im- \_,x'_;-.::\:-.::
plementation, are given formal definitions in this calculus. N AN
N

NI,
. . . . . . . AR

The design and experimental Lisp Machine implementation of LNF, a fully lazy higher IR
order purely functional programming language with reduction semantics, are discussed. -’_,‘\R‘-i"-."i

'l"
r
%
?

o7
2
oy

The LNI" compiler transforms high level expressions into representations of LNF-calculus
wils. LNF’s runtime system, a direct realization of the LNF-calculus’ “is reducible to”
relation, takes as input LNF-calculus wifs and produces irreducible wffs (wfls in lazy-
normal form) as result. The thesis ends with brief discussions of alternate approaches to
functional programming language compilation and runtime system organization.
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Chapter 1

Foundations

At its core, the implementation of LNF is a realization of a formal reduction calculus
called the LNF-calculus. This chapter contains some preliminary conventions,
definitions, and results concerning reduction calculi.

First, a formal definition of reduction calculi is given. Next, two reduction calculi: the A-
calculus ([Church 1936], [Church 1941]) and the SKl-calculus ([Schonfinkel 1924]) are
presented. Schonfinkel’s classic transformation of -calculus well-formed formulas (:-
wifs) into SKI-calculus well-formed formulas (SKI-wffs) is then defined. Wadsworth’s
concepts: head-redex and head-normal form are presented next. These concepts original-
ly appeared in Wadsworth’s Ph.D. thesis ([Wadsworth 1971]). Wadsworth’s concept

'- v a
.

N
head-normal form is a generalization of Church’s normal form in the X\-calculus (X- o
normal form). The notions initial-redex and lazy-normal form are introduced. The no- Iy
tion lazy-normal form is a generalization of the SKl-calculus’ normal! form (SKI-normal !.;. LY
{ form). One would not be far off by saying that lazy-normal form is to the SKl-calculus :_.:-‘\::C::
as head-normal form is to the A-calculus. Some results relating the two calculi are then ARV
stated and proved. A few new resuits relating SKI-wfls in lazy-normal form to M\-wffs in tf‘:i\:ﬁ:
head-normal form and to SKI-wffs in SKI-normal form are also proved. The chapter PR,
. ends with a very brief discussion of A\-G-calculus [Wadsworth 1971] (a modification of ) Py
the A-calculus in which the wfls are rooted acyclic graphs). \:‘-._,_‘;
* o \.:‘:.r ?
. P,
; 1.1. Reduction Calculi :-,:',:_ o
A AN
' In the definitions to follow, the definienda appear in italics. !-;J'.-;_:,;
"'%:.\.‘_\:N
J Definition 1.1: A reduction calculus R can be characterized by its set of well-formed j\.:::.‘;::f »
b formulas (R-wff) and a binary relation “immediately reducible to” (R-imr) on R-wff. :-',;.{: NN
t hY) :}\ﬁ"j
. Reduction calculi, so defined, are exactly the ‘“General Replacement Systems” of »

B.K. Rosen in [Rosen 1973]. NN
A
. . . . . . N R

BOLDFACE UPPERCASE identifiers will be used for meta-variables denoting arbi- RSO AN

. . . . . . . ",

trary R-wffs. Different identifiers denote, in general, different R-wfls. The identity ;J.\._‘:-':
AN S S AN

-~ e T I T R > ™ "~ \.:.-:“:.""‘:
- «gw LI ~ . N, e T N A St A T

- v._:? r : " :\..k.\.r‘a\a_ NN N A ::J':- ,\'.-:- __c':-':f\d'__l\(:

« ey Y J:\'r\‘. . \f\";\:_\"\f-.:\"_\"-_"\"\

. . AL LR L Nl R '\"\.
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relation on R-wffs is denoted by “=". ::2;:*;: )
[V SR S et
Definition 1.2: Let R be a reduction calculus, defined by the set of well-formed formu- :._p,-.’ gt
las R-wff and binary relation R-imr. Q,u‘\-,.h u
e Let A B € R-wif. A immediately reduces to B iff the ordered pair <AB> in '\{-{\*‘
R-imr. <A,B> in R-imr is often written A R-imr B. :\-F"\-\»-f’ ¢
o Let A€ R-wfl. A is (ir)reductble iff there is (no) B in R-wff such that A R-imr B. A
o The sequence A, Ay, .. ., A, is a reduction sequence of A, iff A; immediately N
. RTINS
reduces to A; ., fori=1, ..., n-1. .:-,.N,:,,::_.
e R-redis the transitive closure of R-imr. :-:‘:,:::N:-.:
o Let A Be€R-wif. A reduces to B (B is a reduction of A) iff A R-red B. ':'J".:-‘:-':n'
. . .. R . P AR
e R-red*is the reflexive transitive closure of R-imr. NN
e Let A B, C€ R-wff. If A R-red* B and A R-red* C implies the existence of a D . T e
in R-wff such that B R-red* D and C R-red* D then R is said to have the AL
Church-Rosser property (R is Church-Rosser). The name comes from the work ,, '
done by A. Church and J.B. Rosser in [Church 1936]. "’ '. iy
- d . . t- - -. B . . ) " . "X ..
e R is determinustic iff R-imr is a partial function .&_« \
! :
Note that any deterministic reduction calculus R trivially has the Church-Rosser pro- Y ,
perty. \;\'::::\f
-}-f::i':f:-?‘
oy e
An Example of a Simple Reduction Calculus: ::.’:§: : :
AR GEL LN
Definition 1.3: Let SUM be the reduction calculus defined by SUM-wfl and SUM-imr. ‘.‘_?':;;:_!-;,
I:_‘-'“,/:..-:\-f‘
Definition 1.4: SUM-wff is defined inductively as follows: ;:F-E:::ﬂf;
e Every integer is a SUM-wff. :'_‘_:-}_.rf
e £ A and B are SUM-wffs, then (A + B) is a SUM-wff. Ao lnin

Definition 1.5: SUM-imr is defined inductively as well:
e (I+ J)SUM-imr K, for all integers I, J, and K where K is the sum of I and J.
e (A + B)SUM-imr (C + B), for all SUM-wfls A, B, and C where A SUM-imr C. o
e (A + B)SUM-imr (A + C), for all SUM-wfls A, B, and C where B SUM-imr C. .

From these definitions it can be seen that no integer is reducible ana that any SUM-wf
A which is not an integer is reducible.

A reduction sequence (there are, of course, many others) of the SUM-wfl
(B +2) + (0 + 10)) + (89 + 4)):

L.
(((3 + 2) + (0 + 10)) + (89 + 4)), A
(((3 + 2) + 10) + (89 + 4)), =
((5 + 10) + (89 + 4)), -
((5 + 10) + 93),
(15 + 93),
108.

[t is easy to verify that even though SUM is not deterministic it is Church-Rosser.

P AT AN TR A N
a.'f:a{r::fs:_:z,;.;:?“?“
AT AE R R S N NS AN AL ﬁf
.’ ] INJxJ~‘~A.‘m. .ﬁ:'.;.'.ﬂ:‘f:' l'} f:' f:‘f:‘f}f.:f
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1.2. The )-calculus
The use of metavariables follows (for the most part) that of A. Church in [Church 1941].
Boldface lowercase identifiers denote variabless. BOLDFACE UPPERCASE
identifiers denote arbitrary \-wfls.

Definition 1.6: Let A-calculus be the reduction calculus defined by the set of well-
formed formulas A-wff and binary relation A\-imr.

1.2.1. Well-formed Formulas

It will often be convenient to wuse shorthand of the form FUNCTION-
NAME[ARG,, .. ., ARG, ] to stand for X\-wfis and PREDICATE-NAME-

r,r.‘ .,’.-‘ SRR
: .f,»{ @
A 2 AN

P[ARG,, . . ., ARG, ] to stand for predications. For example, the piece of shorthand :a"'\:"\"
b OPERATORIA] (defined below) will stand in for a \-wfl and the shorthand VAR-P[A] RURNEL
ﬁ (also defined below) will stand in for the predication “A is a variable”. Before its use, "_:-:‘:-::-:
o each function and predicate will be given a formal definition. In these definitions, the ‘ ®
E:::’ author will make use ot the following familiar forms: \:":. " "
- e (andC,---C,) \*\:,:
E-C: e (orD;---D,) SRS
2 e (notB) AN
b . (ifB Ve
. then El
o [elseif B,
N then E; ]*
~ else E)

»
[ ]

(let <NAME> be E, in E,)
(E: where <NAME> 15 E,)

Definition 1.7: VAR is the set of all lowercase identifiers. Elements of VAR are called

. variables. Some examples of variables: “‘a”, “flat”. and “tire’’. For all variables v,
ot VAR-P[v] is true.
| ]
!:-; Definition 1.8: »-wff is defined inductively as follows:
,‘_:.:, e Every variable is a A\-wff.
L::- e If visavariable and B is a A-wfl, then (A v B) is a \-wfl. e
:_N:: e If A and B are \-wfls, then (A B) is a A-wfl. g _\
P RO
N Definition 1.9: Let A = (A v B). A is an abstraction (ABSTRACTION-P[A]), v is the
ff: bound variable of A (v = BV[A]), and B is the body of A (B = BODY]A]).
‘.
"'
e Definition 1.10: Let C = (A B). C is a combination (COMBINATION-P[C]), A is the
s operator of C (A = OPERATOR[C]), and B is the operand of C (B =
> OPERANDI|C]).

X o
~ .o
i The pair of parentheses surrounding combinations is often omitted. Further, the combi- - .,
" nations: ((A B) C), (((A B) C) D), etc. are written: A B C, A B C D, etc. Using this N
g shorthand (association of combination to the left) for the combination ((A B) (C D)) NSRS
.-.v results in A B (C D). NN
\;.'::'\.‘-‘ AR S S AN RS LS L R RN AL U PR YR Y ot ’ L o C R 2 o RN P ARG S :'."'F'::':

.-'.- ¥ w~ :' A '\:-\"‘ A RS RY -‘.-«_"- te e < .‘." " n . LN ': \ "= .\‘-"A ~.'.. . '\k';'.‘-" " ‘:
A N
. 'n " -5 o7 o LR ERIC ] ( Y LA

S '\‘.\' S Ia% 9, ;-.’f:ﬁfi-.‘t&-.‘i-.fvl-.ﬁ.".‘ ':f\'t 'f:‘:\.':\'f_::"::'-hftj..\. L&-._.::.x :".':f:‘}\.
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Definition 1.11: Let A € X\-wff The pair < sf B> where sf i1s a function (a composi-

[N

¥
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tion of the selector functions BODY, OPERATOR. and OPERAND) and B is a X-
wil, is a subformula of A if sf[A] = B

Note that x is not a subformula of (M x v). The phrases
occurs in (the context of) A", and ‘A contains B'' are often used in place of the some-
what unwieldy phrase “ <sf B > 1s a subformula of A”

Definition 1.12: Let v € VAR and B € \-wfl The variable v occurs free in B (v has a

L
®

¢,
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._.,-
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5
4 &8

f!‘d":

“B s a subformula of A, "B
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free occurrence in B) iff

(orB=v

(and B = (C D)
v occurs free in either C or D)
(end B = (A u C)
it is not the case that u = v
v occurs free in C)).

Definition 1.13: Let v € VAR and B € h\-wfl. The variable v occurs bound in B (v has

4

5

]
cerleT
'.,'.\'n'l

a bound occurrence in B) iff
(or (and B = (A u C)
(or (and (u = v)

(u occurs in C))

v occurs bound in C))
(and B = (C D)
v occurs bound in either C or D)).

[t is possible that a variable has both free and bound occurrences in the same \-wfl. For
example, consider the variable v in the N-wil (v (X v v)). Its occurrence in the operator
ind its occurrence in the operand is bound.

N

Definition 1.14: The free (bound) variables of a A\-wil A are those variables which have

free (bound) occurrences in A.

Definition 1.15: Let A € \-wff. A is closed iff A has no free variables.

1.2.2. Reduction

The definition of the “immediately reducible to” relation in the X-calculus depends
Informally, SUBST[A,v,B] (defined formally
below) is B with all free occurrences of v in B replaced with A Although it is easy to
informally communicate the essence of the notion, it is also easy to make a mistake
when writing out the formal definition. Besides having a complicated formalization. the
function SUBST is expensive to implement. This is one of the reasons for basing the
LNF-machine on the LNF-calculus — a reduction calculus without variables and substi-

directly on the notion of substitution.

tution.
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Definition 1.16: Let v € VAR and A, B € A-wif.
SUBST[A,v,B] 2
(fB=v
then A
elseif VARP [B]
then B
elseif B = (C D)
then (SUBST[A,v,C] SUBST[A,v D))
elseif B = (A v C)
then B
elseif (and B = (A u C)
.. it is not the case that u = v
u does not occur free in A)
then (\ u SUBST[A,v,C])
else ;; B=(ku C),
;5 1t is not the case that u = v, and
;; u occurs free in A)
(A x SUBST[A,v,SUBST[x,u.C]])
where x is a variable which does not occur

in either A or C).

Definition 1.17: (A v B) a-imc (a-converts) (\ u SUBST[u,v,B]), for all \-wfls B and
all variables u and v, where u does not occur free in B.

Definition 1.18: (A v B) A) 8-imr SUBST{A,v,B], for all variables v and :\-wfls A and
B. Any M\-wff of the form {(A\ v B) A} is a B-redex (8-REDEX-P[((» v B) A)]). The
X-wff SUBST[A,v,B] is the 8-reductum (contraction) of (A v B) A).

Definition 1.19: X-imr is defined inductively:

e A X-imr B if A a-imc B.

e A )-imrBif A S-imr B.

e (A B) »-imr (C B) if A \-imr C.

¢ (A B) X imr (A C)if B -imr C.
> e (AvB) X imr(Av C)if B x-imr C.
iy ..
t:l\" The five clauses in the definition of A-imr are called reduction rules of the \-calculus.

The first two reduction rules differ from the other three. Both the first two rules
“specify a redex-reductum pair”’ whereas the other three “specify a reduction contezxt —
l.e. a context in which a reduction may take place”. For this reason the first two rules
will be called substantive reduction rules and the others contextual reduction rules.

W . K.
*7

o r‘:‘:‘:':' '> ., . v n
LA A ALY - & % Y
'l- ‘. -
: P A x, (]
a5 e @ P v ]
] . AR " - ,
oalale ey .
ambdeddededienbon

X

‘
{2 The contextual reduction rule:
e (A B) Mimr (C B) if A Mimr C
N )
;" says that the combination (A B) is a reduction context for A. Similarly, the contextual
F: reduction rule:
V) (A B) \-imr (A C) if B Mimr C
g states that the combination (A B) is a reduction context for B. Together these two
g{: rules indicate that the M-calculus is nondeterministic. Anytime a single wif is a reduction
)
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': context for more than one subformula, the “‘immediately reducible to” relation (if N
nonempty) will not be a partial function. F‘ 2
Definition 1.20: Let A, B be \-wffs. In case A A-imr B by virtue of the fact that ASF ES?'

B-imr BSF where ASF (BSF) is a subformula of A (B), then ASF is the redez con- \
tracted in the reduction from A to B

i Definition 1.21: \-red is the transitive closure of the reiation A-imr.

! Definition 1.22: )-red® (3-red*) 1s the tetlexive transitive closure of the relation X-imr

(B-imr).

Theorem 1.1: The X-calculus is Church-Rosser. For the proof, see {Church 1941).

Definition 1.23: A \-wfl E is in M-normal form (\-NF-P[E]) iff E does not contain any
-redexes.

Definition 1.24: Let A, B be \-wfls. If A \-red* B and X\-NF-P[B], then B is a X-

normal form of A.

Definition 1.25: Let A € \-wfl. Assume (not A»-NF-P[A]). By definition, A contains at
least one Bredex. The leftmost occurrence of a B3-redez of A, (LEFTMOST-£-
REDEX]A)) is defined as follows.

LEFTMOST-3REDEX[A] 2

(if -REDEX-P[A]
then A
elseif A = (A v B)
then LEFTMOST-3-REDEX([B]
else ;; A = (B C)
(if B contains a J-redex
then LEFTMOST-3REDEX([B]
else LEFTMOST-3-REDEX[C)))

wre W e R WEse "Wy §F

Definition 1.26: Let A, B be M\-wfls. A M-normal-imr B iff A h-imr B and the redex
contracted was LEFTMOST-3-REDEX[A].

In {Church 1941], the reduction calculus \-calculus 1s called the “caleulus of X\-K-
conversion”’, the relation A-red* is called “conv-I-1I", and the relation XN-normal-imr is
called a “reduction of order one”’.

Church’s “calculus of A-conversion™ (also presented mn [Church 1941]) differs from his | IO )

*calculus of A-K-conversion’ in the definition of well-formed formulas. In Church’s M- \.'s"::w
conversion calculus, an expression of the form (N v B) s well-formed only 1if there 15 at NS ﬂ.'-f'\}‘
least one free occurrence of v in B N

Definition 1.27: \-normal-red* is the reflexive transitive closure of N-normal-imr.

L
" \r\.-é.-,:f\:f:
Definition 1.28: Let A, B be \-wfls B 15 a N-onormal reduction of Al A N-normal- \i\f\:\t\ﬁ
. w/
red* B. NGNS
AN
VA S
NN N N
2
N N N e e I e A O e A S R S A S M G vy \:.\}\*‘-:')\ . ::‘\
PRSI N L SN N A A NN RS A AN I A AT AL AT RE RIS A RSP AT AN e > RN W
N R S RN A A S S A S v WA DA A A A AR AR SN R At S \ LG
t;'&’"-’ *\:' ,\J"-i'-:‘\-'\*'\._\ P ;\:\f"f\a\ ;\:. {\ > RN CHXS N A v )-\'\ \"\'\ " - \'.. (
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AL
Definition 1.29: Let A A,, .. . . A, be \-wfls. A A, .., A, is a \-normal order .":""
reduction sequence \fl A, X-normal-imr A, .|, 1 =1, . ., n-1. 2‘:.::..-%&
LS
Theorem 1.2: The A-NF Standardization Theorem. Let A € A-wfl. A has a A-normal . ',;'\-&:: }
form iff there exists a \-wff B such that »-NF-P[B] and A A-normal-red* B. For the :::’_.:’.\,? ,
proof, see [Church 1941]. st
.
Yo Note that the reduction calculus characterized by the sets A-wff and A-normal-imr is a :;:::I:.
deterministic one. This is true because each M\-wff contains at most one leftmost F-redex \$'-;'-‘_::-’
" and, hence, is a reduction context for at most one of its subformulas. :',-:;ﬁ:::-\. ]
SRR
®
1.2.3. Head-normal Form RO
fensrmalFoon I
Head-normal form is a generalization of the concept of A-normal form — i.e. a A\-wff may s o)
have a head-normal form without having a A-normal form. ‘&;\f
:"’_ N
Definition 1.30: Let A € \-wfl. A contains a head-redez R iff S P
(or -REDEX-P[A] i
(and A = (A v B) Sl
B contains a head-redex) ::_'f.:-'i}"-:
(and A = (B C) e ;d‘.
(not B-REDEX-P[A]) SN
B contains a head-redex)). 5 a's.g‘ =1
RO
Definition 1.31: Let A € A\-wff contain a head-redex. The head-redez of A is defined to \'_:.-ftﬁ: '
be HEAD-REDEXIAJ where: NN
HEAD-REDEX[A] 2% T
(if REDEX-P[A] - f,,,
then A -~
elseif A = (\ v B) ':’\f
Tl
then HEAD-REDEX(B] Tagin]
else HEAD-REDEX{OPERATOR[A]) -f':‘_f("‘?: by
awu Wy
e Definition 1.32: Let A € \-wfl. A is in head-normal form (HEAD-NF-P[A]) iff Ny '.}3&‘
N, (or VAR-P[A] TN
Y (and A = (\ v B) :::f:ﬁ:# '
s HEAD-NF-P[B)) RO
¢ (and A = (B C) i
- (ﬂOt ﬂ-REDEX-P[A]) o ;': r
- HEAD-NF-P[B))). Y
<’ ~.__\:,\: .~
- AT AT e
- Some notes on head-normal form: }_}\:_‘.{-
N e An alternate definition for a A\-wff A being in head-normal form is that A is in head- '-::'~__~:"~:
' normal form iff A does not contain a head-redex. a '. )
e A X\-wff in head-normal form always looks like: PRI
(- (A (vBy-- B, ) ), n,m>0 PR
- - SRR
e A X\-wff not in head-normal form always look like: R A
(A, (B B)A)B, - - - B,) - )), n,m >0. NN
WA
R
IR
..:\.r"f-
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Definition 1.33: Let A, B be \-wfls. A head-imr B iff A h-imr B and the redex con- ufﬂ’f\"f o
tracted is the HEAD-REDEX[A]. ; “‘.'1’5 al
LA AN,
Definition 1.34: head-red* is the reflexive transitive closure of head-imr. Yy '.‘ﬁ:‘.‘ |
ooy "'l'o
Definition 1.35: Let A, B be M\-wfls. B is a head reduction of A iff A head-red* B. e :::'
e
As mentioned above, the concepts head-normal form, head-redex, and head reduction ®
(defined above) appeared oniginally in [Wadsworth 1971]. AN AN,
.r':.-'__.rl:f".r )
A
Theorem 1.3: Let A € \-wfl If A has a A-normal form, then A has a head-normal -':::J‘:j';_\.*
form. However, A having a head-normal form does not imply that A has a A-normal o "&'5-‘\ 3
form. The M-wfl (v (A x (x x)) (X x {x x)})) is an example of a A\-wfl which has a Pariaiutat.
head-normal form (it is 1n head-normal form) but has no A-normal form. “ “._.‘:s,‘
shotidihsy
sy
The theorem above says, simply, that the subset of A-wffs having a head-normal form '::\'E::::',::::
contains the subset of A-wfls having a normal form. .'i“:::.::;.:
¢ Mo
Theorem 1.4: The HEAD-NF Standardization Theorem. Let A € A-wff. A has a head- '.AA h‘
normal form iff there exists a \-wfl B such that HEAD-NF-P[B] and A head-red* B. S s
For the proof, see [Wadsworth 1971]. N ',“..':q:"::

The reduction calculus characterized by the sets A-wfl and head-imr, like the calculus A
based on the sets A-wfl and A-normal-imr, is deterministic. g
4

o
Z22]

1.3. The SK]-calculus

N
& SO
i o N SR
The SKl-calculus, as presented herein, is essentially Schonfinkel’s Funktionenkalkiil o X

(with Schonfinkel’s functor C renamed to ) presented in [Schénfinkel 1924]. The SKI-
calculus is equivalent in power to the A-calculus.

Definition 1.36: Let the reduction calculus SK/-calculus be defined by the set of well-
formed formulas SKI-wff and the binary relation SKI-imr.

1.3.1. Well-formed Formulas

Definition 1.37: SKI-wff is defined inductively as follows:
e Every variable is an SKI-wff.
e The functors S, K, and I are SKl-wfls. For all functors X, FUNCTOR-P[X].

[ These functors are also called combinators.
t e For all SKI-wfls A and B, the combination (A B) is an SKI-wff. A
> L] -
. “~ »
o0 . . . AL A
Definition 1.38: An atom is either a variable or one of the functors S, K, or I. For all ")‘:
atoms X, ATOM-P[X]. SRR
| [ ] ®
\J
: Boldface lowercase identifiers now stand for arbitrary atoms, not just variables. ."-."_;-{kj\'
4 BOLDFACE UPPERCASE identifiers now stand for arbitrary SKI-wffs. :f\.r.;.r*f:.'
d \\‘ '\f\::
) Spnainlnd
SRR
AR
' N PP O S D L o P T L R PN A SR Rt L LG TL PAS ST TR RTIS NI IS NIy A RIS IF RV I R N ad]
A B S o o o A a7 e
. ‘ R AN BTN N L ACA N '
RN 31- R D R R A G 0 00 SR I VD A o S S LA O
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Definition 1.39: Note that every SKI-wfl can be written in the form: s '!"
s
aE,- -E, n2>0 )
The atom a is the initial atom of the SKI-wff. The SKI-wfls E;, . . . . E,, are the ar-

guments of the SKI-wff and E; is the SKI-wfl’s ith argument.

Definition 1.40: Let A € SKI-wfl. The pair <sf, B>, where sf is a function (a compo-
sition of the selector functions OPERATOR and OPERAND) and B is a SKI-wff, is a
subformula of A if sf[A] = B.

Definition 1.41: Let X € SKI-wff have the two subformulas: <yf,Y> and <zfZ>.
These subformulas are disjoint iff there is no function f such that yf = fozf (where
o denotes functional composition) in which case Z contains Y, or zf = foyf in
which case Y contains Z.

1.3.2. Reduction

~ o
y
w

Reduction in the SKl-calculus does not depend on the notion of substitution. Thus, the
relation SKI-imr is much easier to formalize than A-imr.

5

?

ﬁ
2
P
LY
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e

Definition 1.42: SK/[-imr is defined inductively:
e SF G XSKI-imr F X (G X).

K XY SKl-imr X.

I X SKI-imr X.

A B SKI-imr C B if A SKI-imr C.

A B SKI-imr A C if B SKI-imr C.
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The five clauses in the above definition of SKI-imr are called the reduction rules of the
SKl-calculus. The first three are the calculus’ substantive reduction rules and the other
two its contextual reduction rules. It is easy to see that the SKl-calculus, like the -
calculus, is nondeterministic.
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Definition 1.43: An SKI-wfl E is an SKI-redez iff (SKI-REDEX-P[E]) where
SKI-REDEX-P[E] 2¢
(r E=SFGX
E=KXY
E =1X).
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Definition 1.44: (from [Sanchis 1967]) Let X € SKI-wff. Let U and Z be SKl-redexes
contained in X. Let Y be the SKI-wff which results from contracting U — i.e. X
SKI-imr Y. The residuals of Z in Y are as follows (each of the residuals will be an
occurrence of an SKl-redex in Y):

e If Z is U, then there are no residuals.

e If Z is disjoint from U, then (since Z is unaflected by the contraction) the
corresponding occurrence of Z in Y is the residual of Z.

e If Z is contained in U, then (depending on which type of SKI-redex U is) there
are zero, one or two residuals. There are none in case U =K A Band Z is in B.
Thereisoneincasse U=1A KAB, SABC,orSBACand Zisin A — it
is the occurrence of Z in A which is in Y. There are two in case U =S A BC
and Z is in C — each of the occurrences of Z in the two occurrences of C which
arein Y.

e If Z contains U, then the residual is Z,, where Z, is the SKI-wff in Y such that Z
SKI-imr Z, by virtue of contracting U.

Observe that every residual of Z is an occurrence of an SKl-redex having the same

initial atom and same number of arguments — l.e. the same type of SKl-redex as Z.

Definition 1.45: SK/-red is the transitive closure of SKI-imr.
Definition 1.468: SKI-red* is the reflexive transitive closure of SKI-imr.

Lemma 1.1: Let X € SKI-wfl. If X SKI-imr Y, (by virtue of contracting SKl-redex U,)
and X SKI-imr Y, (by virtue of contracting SKI-redex U,), then there is an SKI-wff
Z such that Y, SKlI-red* Z (by virtue of contracting the residuals of SKl-redex Uj)
and Y, SKl-red* Z (by virtue of contracting the residuals of SKI-redex U,). For a
proof, see [Sanchis 1967].

Theorem 1.5: The SKl-calculus is Church-Rosser. For a proof, see [Sanchis 1967].

Definition 1.47: An SKI-wff E is in SKI-normal form (SKI-NF-P[E]) iff it does not con-
tain any SKl-redexes.

Definition 1.48: Let E, F € SKI-wfl. F is the SKI-normal form of E iff SKI-NF-P[F]
and E SKl-red* F.

Definition 1.49: Let E, F € SKI-wff. E s equivalent to F (EQUIVALENT-P[E F]) if
the SKI-normal form of E = the SKI-normal form of F.

Informally, two equivalent SKI-wfls are said to be different representations of the same
object. The SKI-normal form is thought of as the preferred (or canonical) representation
of the object.
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RIS
PATA
Definition 1.50: Let A € SKI-wfl. Assume (not SKI-NF-P[A]). By definition, A con- g' : _
tains at least one SKl-redex. The leftmost occurrence of an SKl-redex in A 1s A
(LEFTMOST-SKI-REDEX[A]) where E v ":
LEFTMOST-SKI-REDEX[A]) 2 \5 o]
(if SKI-REDEX-P[A] SRR
then A ;_ oL ..'f‘-':
elseif OPERATORI[A] contains an SKl-redex
then LEFTMOST-SKI-REDEX[OPERATOR [A]] ::':.;_:‘J\ Y
else LEFTMOST-SKI-REDEX[OPERANDIA]]) PO
v
] \ N
Definition 1.51: Let A, B € SKI-wff A SKI-normal-imr B iff A SKl-imr B and the ::;i:ﬂ:‘:. X
redex contracted was the LEFTMOST-SKI-REDEX([A] : T
> ORI AT
: Definition 1.52: Let A,Ay .. . A, € SKI-wfl. A, Ay, .. . A, is an SKl-normal f-;.t-: ":.‘;};'
) order reduction sequence iff A; SKl-normalimr A, |, :=1, .  n-lL .1{:, ..s:::l
1 W W) (]
PR AN
Definition 1.53: SKI-normal-red* is the reflexive transitive closure of SKI-normal-imr. .fz.{'t "
[ ] ®
Definition 1.54: Let A, B € SKI-wfl. B is an SKI-normal reduction of A iff A SKI- R,
normal-red* B. : ""?/}‘.:,'-:":-:_";
RESRNN
Theorem 1.8: The SKI-NF Standardization Theorem. Let A € SKI-wff. A has an SKI- :}j‘-
normal form iff there exists an SKI-wA B such that SKI-NF-P[B] and A SKI- > ".\
normal-red* B. For the proof, see [Curry 1958]. F:.g'-'_'.-_:.‘-_'.'r
LA
VNI.-"-. -
The reduction calculus determined by the sets SKI-wff and SKI-normal-imr 1s deter- ::::$:$:§
ministic, since the leftmost SKI-redex (if 1t exists) is umque. e A
AN
A N ¥

» ®
1.3.3. Lazy-normal Form 5::‘3:::':& \
NI
It was stated in the introduction to this chapter that the concept lazy-normal form in AN ;
the SKI-calculus is not unlike the concept of head-normal form in the X-calculus. lLazy- ft..‘-':‘:::: '
normal form is defined in this section and then later on it is shown that A-wfls in head- ." "'.'.‘."‘
normal form, when transformed into SKI-wfls via Schonfinkel’s abstraction algorithm, TR JRGLN
are in lazy-normal form. RN
e A e Y
A
Definition 1.55: Let E € SKI-wfl. E contains an initial redex iff - :\_"..::.
(or SKI-REDEX-P[E] RIS
(and COMBINATION-P[E] ) ®
. . . . - A LAY (4
OPERATOR([E] contains an initial redex)) R ASAN,
LS AN
ARSI
Definition 1.56: Let E € SKI-wfl contain an initial redex. The 1nitial reder of E 1s t::_:::::
defined to be (INITIAL-REDEXTE]) where SRS
INITIAL-REDEX)(E] 2 ;-.*- -~ -;.‘-
(if SKI-REDEX-P[E] YO “:
then E AN
else INITIAL-REDEX[OPERATOR[A]]). O gAY
Q
-P%:_‘-h‘_m"‘ .
Caate
| -
RPN
"""" \-{\}\;-\:-‘}\:Q}" N TR oY AT AT A TS AN AT AT f\':.':" f’?‘&
ACATA A A T N N A T AN A (N A TR S SN TR R RS,
o I"‘n:“l‘ CACATS o . F et ."_. v, e RPN :'.I.\f‘-’\{_‘/\-. '/.-n'_'f__".‘"..’.."“' \'
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The SKI-redexes which are not initial redexes are called interral redezes since {or an
SKI-wff X = a X, - X, , each of its internal redexes are contained in one its X;s.

Definition 1.57: An SKI-wfl E 1s i lazy-normal form (LAZY-NF-P[E]) iff E does not
contain an initial redex.

Observe, therefore, LAZY-NF-P[E] iff E is an atom, or E is a combination but not an
SKI-redex, and the operator of E is in lazy-normal form.

Definition 1.58: Let E, F € SKI-wfl. F is a lazy-normal form of E iff LAZY-NF-P[F]
and E SKl-red* F.

Definition 1.59: Let A, B € SKI-wfl. A lazy-imr B 1ff A SKI-imr B and the redex con-
tracted was the INITIAL-REDEX[A].

Definition 1.80: Let A, B € SKI-wfl. A internael-tmr B iffl A SKI-imr B and the redex

contracted was an internal redex.

[t may be noted that the reduction calculus characterized by the set of well formed for-
mulas SKI-wfl and the relation lazy-imr is deterministic.

Definition 1.61: The relation lazy-red* (internal-red*) is the reflexive transitive closure
of lazy-imr (internal-imr).

Some observations concerning initial and internal redexes:

e An SKI-wfl contains at most one initial redex.

e [f an SKI-wff contains an initial redex X then X is also the SKI-wfl’s leftmost SKI-
redex.

o An SKI-wff not in SKl-normal form always contains a leftmost SKI-redex but need
not contain an initial redex. For example, consider the SKI-wfl X = (K (11)). X's
leftmost SKI-redex is (I ) but X does not contain an initial redex.

e If X internal-imr Y, then Y has the same initial atom and the same number of argu-
ments as does X. It then follows that Y contains an initial redex IR’ iff X contains
an initial redex IR and IR’ is the residual of IR in Y.

Lemma 1.2: Let X € SKI-wfl. If X internal-red* Y and Y lazv-imr Z. then there i1s a
W such that X lazy-red* W and W internal-red* Z
Proof:
It has been noted that if A internal-imr B and B lazy-imr C,
then the initial redex in B is the residual of an nitial redex in A,
Let IRY be the initial redex contained in Y
It follows from the preceding remark that X contains an mitial redex (call 1t IRX)
and that IRY is the residual of the residual of the residual of  of IRX
[t may also be observed that IRX and TRY have the same initial atom
and the same number of arguments — they are the same tyvpe of SKl-redex.
Let X=aX, ' X,.
X internal-red* Y implies Y = a Y, Y, and X, SKl-red* Y,
IRX must be a X, - - X, and IRY must be a Y, Y, for some k- 1.2.0r3
By repeated application of Lemma 1 1. it follows that
there is an X' such that X lazy-imr X' and X' SKl-red* Z,
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where the redexes contracted from X' to Z are residuals of
the redexes contracted from X to Y.
This X' is either:
X, X, (incasea =1), or
X, X; - X, (in case a = K), or
Xl X3 (X2 X3) X4 s Xm (m case a = S)

Therefore, the only initial redexes that could be contracted in
the reduction from X' to Z must be residuals of initial
redexes contracted in the reduction from X, to Y.

It suffices to show that there exists 2 W such that X lazy-red* W, and
W, internal-red* Y.

If X, internal-red* Y, then done.

So, suppose there is X;’ and X,/ such that
X, internal-red* X' lazy-imr X"’ SKl-red* Y.

This situation is similar to the original problem.

There is an important difference, however.

The initial redex contracted in the reduction from X,’ to X"’
is the residual of a redex strictly contained in IRX.

Therefore, the argument up to this point may be repeated
with X, as X, X/ as Y, and X'’ as Z.

Since all SKI-wffs are finite, eventually there will be a first argument of the initial redex
which does not strictly contain an initial redex.

End Proof

Lemma 1.3: Let X € SKI-wfl. If X SKI-red* Z, then there is an SKI-wff Y such that X
lazy-red* Y and Y internal-red* Z.
Proof:
Proof is by induction on the length of the SKI-reduction sequence from X to Z.
Case 1: n=0 and n=1. Trivial.
Case 2: Lemma holds for reduction sequences of length equal to n.
To show: Lemma holds for reductions of length n-+1.
Let the reduction sequence from X to Z be:
Xo, o X, X,y where X =Xjand Z =X, _ .
By the induction hypothesis, there is an SKI-wff W such that
X, lazy-red* W and W internal-red* X, .
If X, internal-imr X, ,, then let Y be W. Done.
So. suppose X, lazy-imr X, _,
It is also the case that W internal-red* X, .
By Lemma 1.2, there exists a Y such that W lazy-red* Y and Y internal-red* X
Therefore, since X, lazy-red* W, X, lazy-red* Y and Y internal-red* X ..
End Proof

n+1

Theorem 1.7: Let A € SKI-wfl. A has a lazy-normal form iff there exists an SKI-wff B
such that LAZY-NF-P[B] and A lazy-red* B.
Proof:
&) Trivial. B is a lazy-normal form of A.
=) Let C be a lazy-normal form of A.
This implies LAZY-NF-P[C] and A SKI-red* C.
By Lemma 1.3, there is a B such that A lazy-red* B and B internal-red* C.
LAZY-NF-P[B] since if B contains an initial redex then
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C would contain an initial redex.
End Proof

Theorem 1.8: Let X € SKI-wll. If Y and Z are lazy normal forms of X and Y =
aY, Y, for some n >0, then Z = a Z, - -~ Z, and there is an SKI-wff W =
aW, - W_ such that Y, SKl-red* W; and Z, SKl-red* W; 1<:<n. A
Church-Rosser like property.

Proof:

By Lemma 1.3, there is a U such that X lazy-red* U, U internal-red* Y,
and U in lazy-normal form.
Y =aY, - Y, implies, since internal reduction sequences do not change either
the initial atom or the number of arguments, U must be of the form:
aU, - -U,; and U; SKl-red*Y, ¢:=1,...,n.
Similary, there 1s a V such that X lazy-red* V,
V internal-red* Z, and V in lazy-normal form.
Since both U and V are lazy-reductions from X, initial redexes are unique,
and both U and V are in lazy-normal form, it must be the case that U = V.
Thus, V=aU, - U, ,Z=aZ -~ Z,,6 and U; SKl-red* Z; 1<: <n.
Since U; SKl-red* Y, and U, SKl-red* Z,. by the Church-Rosser property,
there 1s a W, such that Y, SKl-red* W, and Z; SKl-red* W, ,1<i <n.
Let W=aW, W
End Proof

W FET TN F 7 P dd S X NI N AN Ny @ 'y

-

n -

Theorem 1.9: Let E € SKI-wfl. If E has an SKl-normal form, then E has a lazy-
normal form. However. E having a lazy-ncrmal form does not imply that E has an
SKI-normal form.

The vroof of the above theorem is trivial Tne SKLwfl S (ST (S 11)) is an example of
an SKI-wfl which has a lazy-normal form (it is in lazyv-normal form) but has no SKI-
normal form.

Theorem 1.10: Let A € SKI-wfl. If A has an SKl-normal form B, then there is an
SKI-wfl C such that A lazy-red* C (C in lazy-normal form) and C SKl-normal-red*
B.
Proof:
By Theorem 1.6, there is an SIKI-normal
order reduction sequence A, . . ., A, where A, = A and A, = B.
Either A, is in lazy-normal form or its not. If it is, then the proof is complete.
Suppose, therefore, that A, not in lazy-normal form.
By the definition of lazy-normal form, A, contains an initial redex.
It has been observed that initial redexes are also leftmost SKI-redexes.
Thus, the redex contracted in the reduction from A to A,
is A,’s initial redex implying that A, lazy-imr A,
This same argument may be applied to the SKI-wfls A,, . . ., A, .
There are two cases to consider.
Either it is found that one of these SKI-wfls is in lazy-normal form or
that none of them are in lazy-normal form.
Suppose at least one of them is in lazy-normal form.
Let A; be the one having the smallest index.
By the preceding argument, A, lazy-red* A

A b o n an s ab bl

- T

, and the proof is complete.
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0
- Otherwise, A, lazy-red* A,

v Since A, is in SKl-normal form it i1s also in lazy-normal form.
n End Proof
i
I:.
e, 1.4. Relating the A-calculus and the SKI-calculus
> Definition 1.82: Let E € A\-wfl. The SK/[-transform of E is the SKI-wff \-TO-SKI[E]
-\: where .

-: X\-TO-SKI[E] =

Gt (if VAR-P[E]

then E

-y elseif E = (A v B)
e then ABSTRACT [v,\-TO-SKI[B]]
1 else (\-TO-SKI{[OPERATOR[E]] »-TO-SKI[OPERAND[E]]))

?
:"\: Definition 1.83: For any variable v and SKI-wff B, there is an SKIl-wff

ABSTRACT[v,B] where
ABSTRACT[v B] =

53,

o , )
) (fB=v ]
hé .
o thgn [ ‘ AT
s elseif v does not occur in B ot o ¥
& then K B .
. else N
g . - v Ny
v S ABSTRACT[v,OPERATOR[B]] ABSTRACT[v,OPERAND[B]]) NG
7 The transformation of expressions containing bound variables into expressions without ::-\:-:,-_ ;
e bound variables (called ABSTRACTion) was first presented in [Schonfinkel 1924]. It was . "".
oy Schonfinkel’s aim “‘to make the number of undefined notions as small as we can”. In the I
‘ > case of the transformation from \-wffs to SKI-wfls, the arbitrary abstractions present in “_’,«'::-s"'(;'_
'’ the X-calculus have been replaced with the three special functors (abstractions): 8. K, NN
f 1 S
! & a-nd I :-'-'n‘_ f':'J‘
EACN NG
St N
Cal " A
The SKI-wff \-TO-SKI[EXP] is similar to Church's “‘the combination belonging to e
o EXP"”. In [Church 1941], the transformed expressions were well-formed formulas of AN
.t L . WA e
s “the calculus of X-conversion”. That set of well-formed formulas, as mentioned above, ST
o did not contain abstractions having no free occurrences of the bound variable in the AN
::: body. A\-TO-SKI[EXP] is called ‘the H-transform of EXP" in [Hindley 1972]. AN
» --' .-- ‘f .-.
2 Hindley et al. also define, for SKI-wfls EXP . “the M-transform of EXP". Herein the \- = ,
g transform of an SKI-wfi EXP will be denoted by the M\-wfl SKI-TO-X[EXP] defined ACUNAER
oy below. RS
Cal
&N '
b
k%, 1 In the same paper, Schonfinkel showed that the functor | was unnecessary as 1t could be
x:l' * represented by S and K with the SKI-wfl S K K He even went on to demonstrate that the func-

Ty

tors S and K could be defined in terms of a single functor he called J These representation tricks,
however, are not as remarkable as his “‘bound variable eliminating’ transformation just defined
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Definition 1.84: Let EXP € SKI-wf. The )\-transform of EXP is SKI-TO-\[EXP]
where
SKI-TO-A[EXP] =
(if VAR-P[EXP]
then EXP
elseif EXP = |
then (X x x)
elseif EXP = K
then (A x (\ y x))
elseif EXP = S
then (\ £ (\ g (\ x (T x (g x)))
else ;: 1t 1s a combination

(SKI-TO-X\[OPERATOR[EXP]] SKI-TO-\[OPERAND[EXP])))

1.4.1. Some Results
Some simple results which relate \-wfls to SKI-wffs are stated and proved below.

Lemma 1.4: Redez Preservation Lemma. Let EXP € M-wff. If EXP' = X\-TO-
SKI[EXP], then S-REDEX-P[EXP] iff SKI-REDEX-P[EXP'].
Proof:
First suppose S-REDEX-P[EXP]. To show: SKI-REDEX-P[EXP'].
B-REDEX-P[EXP] implies EXP = ((» v B) A) for some variable v and »-wffs A and B
By the definition of \-TO-SKI,
EXP' = (RATOR’' RAND'), where RATOR' = ABSTRACT[v,B'],
where B’ = \-TO-SKI[B]) and RAND’ = X\-TO-SKI[A].
There are two cases to consider. B’ is either an atom or a combination.
Cuse 1: ATOM-P[B'].
B’ is either v or it is not.
Case la: v = B'.
By definition of ABSTRACT, RATOR' = 1.
RATOR' = [ implies EXP' = [ RAND' which implies SKI-REDEX-P[EXP'].
Case 1b: It is not the case that v = B'.
By definition of ABSTRACT, RATOR' = (K B').
RATOR' = (K B') implies EXP' = K B’ RAND’,
which implies SKI- REDEX-P[EXP’].
Case 2: COMBINATION-P[B'].
Either v occurs in B’ or it doesn’t.
Case 2a: v occurs in B'.
By definition of ABSTRACT, RATOR' =S RT' RN'.
RATOR' = S RT' RN implies EXP' = S RT' RN’ RAND/,
which implies SKI-REDEX-P[EXP'].
Case 2b: v does not occur in B'.
By definition of ABSTRACT, RATOR' = (K B').
Same as case 1b.
Hence, if REDEX-P[EXP], then SKI-REDEX-P[EXP'].

Now suppose SKI-REDEX-P[EXP']. To show: +REDEX-P[EXP].
SKI-RZDEX-P[EXP'] implies COMBINATION-P[EXP']
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Let EXP' = (RATOR' RAND').
By the definition of \-TO-SKI, COMBINATION-P[EXP].
Let EXP = (RATOR RAND).
The definition of \-TO-SKI also implies
RATOR' = M\-TO-SKI[RATOR] and RAND' = \-TO-SKI[RAND].
SKI-REDEX-P[EXP') implies EXP' has one of three forms:
Case 1: EXP’' =1 X, for some SKI-wff X.
By definition of EXP', RATOR' = 1.
If RATOR' =1, then RATOR = () v v), for some variable v
which implies 3-REDEX-P[EXP).
Case 2: EXP! = KXY, for some SKI-wfls X and Y.
By definition of EXP', RATOR' = K X.
If RATOR' = K X, then RATOR = (A v A),
for some variable v and A-wf A. This implies REDEX-P[EXP].
Case 3: EXP' = S F G X, for some SKI-wfils F, G, and X.
By definition of EXP’, RATOR' =S F G.
If RATOR' =S F G, then RATOR = (A v A), for some variable v and \-wff A.
This implies 3 REDEX-P[EXP].
Hence, if SKI-REDEX-P[EXP’], then 3#REDEX-P[EXP].
Therefore, -REDEX-P[EXP] iff SKI-REDEX-P{EXP'].
End Proof

Theorem 1.11: ABSTRACTion preserves SKI-normal form. Let v € VAR and BODY
€ SKI-wfi. If EXP = ABSTRACT|[v,BODY] and SKI-NF-P[BODY], then SKI-
NF-P[EXP].

Proof:

Proof is by structural induction on BODY. There are two cases to consider:
BODY is either an atom or a combination.
Case 1: ATOM-P[BODY]. There are two sub-cases to consider:
Case 1a: v = BODY.
By definition of ABSTRACT, EXP = 1. ATOM-P[EXP] implies SKI-NF-P[EXP].
Case 1b: It is not the case that v = BODY.
By definition of ABSTRACT, EXP = (K BODY).
By definition of SKI-REDEX-P, (not SKI-REDEX-P[EXP]).

:, This and the facts: SKI-NF-P[K] and (by hypothesis) SKI-NF-P[BODY]
4 imply SKI-NF-P[EXP].

E-' Case 2: BODY = RATOR RAND. There are two sub-cases to consider:
e Case 2a: v occurs in BODY.

A By definition of ABSTRACT, EXP = (S RATOR' RAND'), where

> RATOR' = ABSTRACT[v,RATOR] and RAND’ = ABSTRACT[v,RAND].
'_'_»;. By definition of SKI-REDEX-P, (not SKI-REDEX-P[EXP]) and

r (not SKI-REDEX-P[(S RATOR')).

vy By definition of SKI-NF-P, SKI-NF-P[RATOR] and SKI-NF-P[RAND).
W By induction, SKI-NF-P[RATOR'] and SKI-NF-P[RAND'].

v These facts together imply SKI-NF-P[EXP].

_'v Case 2b: v does not occur in BODY.

: By definition of ABSTRACT, EXP = (K BODY).

0y Same as case 1b.
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Let v € VAR and BODY € SKI-wfl. If EXP = ABSTRACT[v,BODY], then it is not
the case that SKI-NF-P[EXP] implies SKI-NF-P[BODY]. This is easy to see. Consider
letting BODY be (I v), then EXP = S (K I) I. Therefore, SKI-NF-P[EXP], but (not

SKI-NF-P[BODY)).

Theorem 1.12: X\-TO-SKI preserves normal forms. Let EXP € l-wfl. If M-NF-

PEXP] and EXP’' = \-TO-SKI[EXP], then SKI-NF-P{EXP'].
Proof:
The proof is by structural induction on EXP. There are three cases to consider:
Case 1: ATOM-P[EXP].
By definition of \-TO-SKI, ATOM-P[EXP'].
ATOM-P[EXP’] implies SKI-NF-P[EXP'].
Case 2: EXP = (A bv BODY). There are three sub-cases to consider.
Case 2a: bv = BODY.
By the definitions of A\-TO-SIKI and ABSTRACT. EXP’' = 1.
ATOM-P[EXP'] implies SKI-NF-P[EXP'].
Case 2b: bv occurs in BODY' where BODY' = \-TO-SKI[BODY]
COMBINATION-P[BODY'], for otherwise
BODY' = bv = BODY which is case 2a
By the definitions of »-TO-SKI and ABSTRACT.
EXP' = S RATOR' RAND',
where RATOR' = ABSTRACT [bv,OPERATOR[BODY']] and
RAND' = ABSTRACT [bv,OPERAND[BODY']].
EXP’ =S RATOR' RAND' implies
(not SKI-REDEX-P[EXP')),
(not SKI-REDEX-P[OPERATOR[EXP']]), and SKI-NF-P[S].
By definition of X»-NF-P, \-NF-P[BODY].
3y induction, SKI-NF-P[BODY'].
4y definition of SKI-NF-P,
SKI-NF-P[OPERATOR[BODY']] and SKI-NF-P[OPERAND[BODY"]].
By Theorem 1.11, then, SKI-NF-P[RATOR'] and SKI-NF-P[RAND/'].
These facts imply SKI-NF-P[OPERATOR[EXP']] and
SKI-NF-P[OPERAND[EXP']].
Therefore, SKI-NF-P[EXP'].
Case 2c: bv does not occur in BODY' where BODY’ = X\-TO-SKI[BODY].
By the definitions of A»-TO-SKI and ABSTRACT, EXP' = K BODY', where
BODY' = \-TO-SKI[BODY].
(not SKI-REDEX-P[EXP']).
By the definition of \-NF-P, X»-NF-P{BODY].
By induction, SKI-NF-P[BODY']. These facts imply SKI-NF-P[EXP'].
Case 3: EXP = RATOR RAND.

By the definitions of \-TO-SKI and ABSTRACT, EXP' = RATOR' RAND’, where

RATOR' = X\-TO-SKI[RATOR] and

RAND' = \-TO-SKI[RAND).
By induction, SKI-NF-P[RATOR'] and SKI-NF-P[RAND'].
It remains to show that (not SKI-REDEX-P[EXP']).
Assume SKI-REDEX-P[EXP’], then, by Lemma 1.4, 3-REDEX-P[EXP).
B-REDEX-P{EXP] contradicts the hypothesis that \-NF-P[EXP)].
Hence (not SKI-REDEX-P[EXP')).
Therefore SKI-NF-P[EXP’].
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End Proof

Let EXP € M\-wf. If EXP' = M\-TO-SKI[EXP], then it is not the case that SKI-NF-
PEXP’] implies M\-NF-P[EXP]. As an example, consider the X-wffl EXP =
Ny (» xx)y)). EXP' =S (KI)I. SKI-NF-P[EXP'] but (not \-NF-P[EXP]).

. fsf‘.l

f,
& &

tpl Y
Vels

Theorem 1.13: Abstraction preserves lazy-normal form. Let v € VAR and BODY €
SKI-wff. If LAZY-NF-P[BODY] and EXP = ABSTRACT[v,BODY], then LAZY-
NF-P{EXP].

Proof:

There are two cases to consider:
Case 1: ATOM-P[BODY]. There are two sub-cases to consider:
Case la: v = BODY.
By the definition of ABSTRACT, EXP = i.
EXP =1 and ATOM-P[I] together imply LAZY-NF-P{EXP].
Case 1b: It is not the case that v = BODY.
By the definition of ABSTRACT, EXP = (K BODY).
EXP = K BODY implies (not SKI-REDEX-P[EXP])).

This and the fact that LAZY-NF-P[K] imply LAZY-NF-P[EXP]. cd,-,-.:-.
Case 2: BODY = RATOR RAND. Again, there are two sub-cases to cons:er: Sl
Case 2a: v occurs in BODY. :f-:::::::
By the definition of ABSTRACT, EXP = S RATOR' RAND', where AL
RATOR' = ABSTRACT[v,RATOR] and RAND' = ABSTRACT[v,RAND]. e
Since the SKI-wfls S, S RATOR’, and S RATOR' RAND' are not SKl-redexes, I
LAZY-NF-P[S RATOR' RAND'] — i.e. LAZY-NF-P[EXP]. RN
Case 2b: v does not occur in BODY. :-.::-:::\:-:
By the definition of ABSTRACT, EXP = (K BODY). AT
Same as case 1b. ::-::‘-':'-',:j-
End Proof S

Let EXP € M-wff. If EXP' = M\-TO-SKI[EXP], then it is not the case that LAZY-NF-
P[EXP’] implies EXP has a head-normal form. An example follows. Let EXP =
O x((AY (7 ¥) Ay (y¥) which implies EXP' = K (SII(S11). LAZY-NF-
P[EXP’'] but EXP has no head-normal form.

- Let EXP € z-wfl. If EXP’' = X\-TO-SKI[EXP], then it is not the case that SKI-NF-
o P[EXP’] implies EXP has a A-normal form. In fact, EXP may not even have a head-
normal form. An example follows. Let EXP = (A x((Az(zzx)) (A z(zzx)))). The
normal reduction sequence for EXP looks like:

Ax((Nz(zzx)(\z(z2x)),
Ax((Mz(zzx))(hz( )) x
Ax{(hz(zzx))(Az(zzx))x
Ax((hz(zzx))(Nz( )) x

* %
%3

PP A0 R N oW
[ 18,

"‘;'z.'"f" 7 d

EXP does not even have a head-normal form! But EXP' = _
¢

SSK(ESESIDNESKKY))(SIK((SSINN(S(KK)YD) $

does not contain any SKI-REDEXes! Therefore EXP’' is in SKI-normal form.
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Definition 1.85: Let A € \-wfl. A 1s in abs-normal form ff ABS-NF-P[A] where
ABS-NF-P(A] 2
(or VAR-P[A]
ABSTRACTION-P[A]
(end A=BC
(not 3REDEX-P[A])
ABS-NF-P([B]
ABS-NF-P[C])).
g Informally, a A\-wf is in abs-normal form if all of its occurrences of 3-redexes lie in the
A bodies of abstractions.
A Definition 1.88: Let A € \-wfl. A is in abs-head-normal form iff {ABS-HEAD-NF-
P[A]) where
ABS-HEAD-NF-P[A] 2%
(or VAR-P[A]

L
',;_"

ABSTRACTION-P[A] RGN
(and A = (B C) NN
(not REDEX-P[A]) Y
ABS-HEAD-NF-P[B)). RN
i ::":‘h\ !
Informally, a \-wff is in abs-head-normal form if all of its occurrences of 3redexes occur - :;:"?::::::
either in the bodies of abstractions or in the operands of combinations which are not % :-.',::-';_:::-:}
redexes themselves. »
s
Theorem 1.14: Let E € \-wfl. If E' = \-TO-SKI[E] and SKI-NF-P[E’], then ABS- :-Q&:?
NF-P[E]. VRS
Proof: \#{:'
The proof is by structural induction on E'. Vv
Case 1: ATOM-P[E']. L S
ATOM-P[E'] implies that either VAR-P[E'] or E/ = 1. NN
If VAR-P[E'], then VAR-P[E] which implies ABS-NF-P[E]. SRRSO
In case E' =1, E = (X v v) for some variable v. Again, ABS-NF-P[E]. ::}';:'_::;
Case 2: E' = RATOR’' RAND'. NGNS,
E' a combination implies that either E an abstraction or a combination ® ®
If E is an abstraction, then ABS-NF-P[E]. - S

So, suppose E = RATOR RAND.
By definition of SKI-NF-P, both RATOR' and RAND' are in SKI-normal form.
By definition of \-TO-SKI, RATOR' = M\-TO-SKI[RATOR] and
RAND' = X\-TO-SKI[RAND].
By induction, both RATOR and RAND are in abs-normal form,

.
' S
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. o e
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£ ST SEA A

iy TR
E is not a A-redex, for if it was, E' would be an SKI-REDEX. by Lemma 1 4. ::::::':',; iy
Therefore, ABS-NF-P[E]. -\;:':‘;: N
End Proof AT
AN
Let EXP € \-wfl. If EXP' = X\-TO-SKI[EXP], then it is not the case that ABS-NF- »
P[EXP] implies SKI-NF-P[EXP’]. Here's an example. Let EXP = (X x (A y y) a)), '_.:f:
which implies EXP’ = K (I a), which is not in SKI-NF. -:.r:"
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*h Theorem 1.15: Let EXP € M-wfl. If EXP’ = A\-TO-SKI[EXP], then ABS-HEAD-
. NF-P[EXP] if LAZY-NF-P[EXP'].
i Proof:
- First, suppose ABS-HEAD-NF-P[EXP]. To show: LAZY-NF-P[EXP'].
KX Shown by structural induction on EXP.
:. There are three cases to consider:
. Case 1: ATOM-P[EXP].
N By the definition of \-TO-SKI, ATOM-P[EXP'].
| ATOM-P[EXP'] implies LAZY-NF-P[EXP'].
o Case 2: EXP = (A bv BODY). There are three sub-cases to consider:
- Case 2a: bv = BODY.
s By the definitions of A»-TO-SKI and ABSTRACT, EXP' = L.
EXP' = [ and ATOM-P[I] together imply LAZY-NF-P[EXP'].
R Case 2b: bv occurs in BODY (and COMBINATION-P[BODY)).
::.' By the definitions of \-TO-SKI and ABSTRACT, EXP' = S RATOR' RAND’,
‘g where
N BODY' = )\-TO-SKI[BODY],
’ RATOR’' = ABSTRACT[bv,OPERATOR[BODY"]], and
v RAND’ = ABSTRACT [bv,OPERAND[BODY"]].
- (not SKI-REDEX-P[EXP']),
: (not SKI-REDEX-P[OPERATOR[EXP']]), and LAZY-NF-P[S].
::; Therefore, by the definition of LAZY-NF-P, LAZY-NF-P[EXP'].
. Case 2c: bv does not occur in BODY.
- By the definitions of A-TO-SKI and ABSTRACT, EXP' = K BODY’, where
o BODY' = \-TO-SKI[BODY].
- (not SKI-REDEX-P[EXP']) and LAZY-NF-P[K].
o These facts imply (by the definition of LAZY-NF-P) LAZY-NF-P[EXP'].
e Case 3: EXP = RATOR RAND.
5 By the definition of \-TO-SKI, EXP' = RATOR' RAND’, where °
RATOR' = \-TO-SKI[RATOR] and RAND’ = X\-TO-SKI[RAND)]. PRI
N By the definition of ABS-HEAD-NF-P, ABS-HEAD-NF-P[RATOR] STl
) By induction, LAZY-NF-P[RATOR']. 1:*::{;;‘-:;
It remains to show (not SKI-REDEX-P[EXP']). :‘::J'.:.F:
N Assume SKI-REDEX-P[EXP'], then, by Lemma 1.4, 3-REDEX-P[EXP]. RRARCHCL,

B-REDEX-P[EXP)] contradicts the hvpothesis that ABS-HEAD-NF-P[EXP].

o Hence (not SKI-REDEX-P[EXP']).
o Therefore, LAZY-NF-P[EXP'].
.:' It has been shown ABS-HEAD-NF-P[EXP] implies LAZY-NF-P[EXP'].

7,

v Now suppose LAZY-NF-P[EXP']. To show: ABS-HEAD-NF-P[EXP].
P Shown by structural induction on EXP’.

2 Case 1: ATOM-P[EXP'].

7 ATOM-P[EXP’] implies that either VAR-P[EXP'] or EXP' =L
" If VAR-P[EXP’], then VAR-P[EXP] which implies ABS-HEAD-NF-P [EXP].

- In case EXP' = [, EXP = () v v) for some variable v.

- Again, it is the case that ABS-HEAD-NF-P[EXP]. .
“ Case 2: EXP' = RATOR' RAND'. sy
ot EXP' a combination implies that either EXP an abstraction or a combination. .'_-:::-:::'\..::
b, If EXP is an abstraction, then ABS-HEAD-NF-P[EXP)]. PR
ey So suppose EXP = RATOR RAND. At
! A AN
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By definition of LAZY-NF-P, RATOR' in lazy-normal form.
By definition of »-TO-SKI, RATOR' = X\-TO-SKI[RATOR].
By induction, RATOR is in abs-normal form.
EXP is not a B-redex, for if it was, EXP’ would be an SKI-REDEX, by Lemma 1.4.
Therefore, ABS-HEAD-NF-P[EXP].
It has been shown that LAZY-NF-P[EXP'] implies ABS-HEAD-NF-P[EXP].
Therefore ABS-HEAD-NF-P[EXP] iff LAZY-NF-P-[EXP’].
End Proof

It is not the case for an arbitrary SKI-wfl E’ in SKI-NF that SKI-TO-A[E'] is in ABS-
NF. For example, let E' = (K z). E’ is in SKI-NF. It is not the case, however, that
SKI-TO-AE'] = ((Ax(My x)) z) in ABS-NF. This same example demonstrates that
SKI-TO-X does NOT ‘‘preserve redexes’’.

Conjecture 1.1: Let A € SKI-wfl. If A’ = SKI-TO-\[A] and SKI-NF-P[A], then A’
has an abs-normal form.

The following result is an immediate consequence of the previous theorem. It is included
here for completeness.

Theorem 1.168: \-TO-SKI preserves quasi-normal forms. Let EXP € h-wff. If HEAD-
NF-P[EXP] and EXP' = \-TO-SKI[EXP], then LAZY-NF-P[EXP'].
Proof:
From the definitions of HEAD-NF-P and ABS-HEAD-NF-P,
it is clear that HEAD-NF-P[EXP] implies ABS-HEAD-NF-P[EXP].
By Theorem 1.15, then, LAZY-NF-P[EXP’].
End Proof

The rciationship between SKI-wfls in lazy-normal form and A\-wffs has been demon-
strated formally. The counterpart wifs in the A-calculus to SKI-wffs in lazy-normal form
are the A-wffs in abs-head-normal form. In a later chapter it will be argued that, when
reducing, “stopping at’’ lazy-normal form, rather than continuing on to SKl-normal
form, has many computational advantages.

4 1.5. The \-G-calculus

The X\-G-calculus, presented in [Wadsworth 1971}, is a deterministic graph oriented ver-
sion of Church’s A-calculus. That is, well-formed formulas in the A-G-calculus are rooted
acyclic graphs as opposed to strings in the h-calculus.

The Standardization Theorem for the X\-calculus guarantees that if a A-wfl has a -
normal form then it can be reached by a M-normal reduction sequence. Unfortunately,
performing A-normal reductions on strings often causes duplication of redexes, thus
creating more work than necessary. Using graphs as well-formed formulas instead of
strings, Wadsworth was able to reduce (but not eliminate) the number of duplicated
redexes that arise when performing A-normal reductions.

What follows is an informal account of Wadsworth’s A\-G-calculus and his suggested
implementation of it. For a formal description of the calculus, the reader is encouraged

.’f '.{.'-~‘-- '-.a' ‘-."-y)l'-"v'.-f)“m-}u*‘: ‘P "xp ‘.-{ -"
”ﬁ:’;ﬁ"?‘;‘d’ﬂgﬁ‘“ -\.».\'\.s_,.l_; ,@n%%;:{a A AN
-

R

ooy,
........ N ¥ n A n e \?\5 7
'\.“;-".""""."'\",..\"s" -\."‘\\."\""\."'.i\' BRI A -\';b."

q{

L2
';,:’
i

7
v}&-ﬁ. !
RS

&

e
r2
z

P o

L]
1

' 5 Ve
b
[y
=

7.

155
K

e
x,'

<9
..I'.fﬁl
2L t:.:

<
7
q
Ve
O

4
A, A

r":‘

™
’

‘5
=

"‘f' : .

Y

£
¢

"'

s

-
3
Yy r e

rE e
v ‘I'.'l """-‘ -.'
s
2
7
-“tr’s

P
[
x

L4
h

'
‘
.
.S
W
ey
o

L ., .8

. .

>4 FACN AL A . " s o CANCA N N -
LY St e e T N MM NI, s et A NN
2 R NN S S D Y N (Y .. R O ARt b S v Al et A R VA ¢



Page 28

to read Chapter 4 of Wadsworth’s thesis, [Wadsworth 1971).

1.5.1. Well-formed Formulas

Free variable occurrenccs are terminal nodes in the graph labeled with the name of the
variable.

A combination is a graph whose root node has two outgoing arcs. One arc points at the e
graph which is the combination’s operator and the other points at the graph which is
the combination’s operand.

An abstraction is a graph whose root node has a single outgoing arc. The arc points at
the graph which is the body of the abstraction. Free occurrences of the abstraction’s
bound variable in the body are nodes which point back to the root node of the abstrac-
tion. These “back pointing’ arcs, emanating from the bound variable nodes, are treated
specially (see next section). Think of them as dotted arcs (lines) and the other arcs as
solid. It was stated in the introduction to this calculus that these graphs were acyclic.
That statement was a simplification of the truth. The truth is that the only cycles in
the graph are those containing exactly one dotted arc.
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The A\-G-wfl equivalent of the X-wifl: (A x (x (a x))) (XA z (z b)) ¢)
Figure 1.1
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Some liberties were taken in the preceding description of Wadsworth’s wffs. In e,
Wadsworth’s thesis the back pointers were not part of the formal calculus — they were RN
introduced as an efficient representation for bound variable nodes in his implementation
of the calculus. In his formal description, bound variable nodes looked just like free
variable nodes. One determined that they were bound by seeing if there was a path ;
from an abstraction node (labeled with the name of the variable it was binding) to it and o
making sure that the variable names were the same.
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1.5.2. Reduction

Breduction is performed in the A\-G-calculus by pointer manipulation rather than by
string substitution.
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The M\-G-wff in Figure 1.1 after contracting leftmost redex
Figure 1.2

Note that the redex ((A z (x b)) ¢) is not duplicated (as would have happened if the
equivalent reduction of the \-wfl had been performed). Instead, the redex is now being
shared by two portions of the reduced A\-G-wfl.

To accomplish this reduction, the two following operations were performed:

1. An indirect:on arc (different from both the solid arcs and the dotted arcs described
above) was drawn from the root of the wfl to the body of the abstraction. This new
kind of arc is represented by a dashed line in the figure.

2. Another indirection arc was drawn from the root of the abstraction to the operand

Observe that is not necessary to search the body of the Jredex’s operator (abstraction)
for the free occurrences of the abstraction’s bound variable to perform the contraction *

When the algorithm “sees’” a node (n,) which has been “forwarded’ via an indirection
arc to another node (n,), it ignores node n| and, instead, “sees” node n, — the node n
was forwarded to. Variable nodes which have (dotted) arcs emanating from them (the
bound variables) are similarly ignored if the abstraction node to which thev point has
been forwarded. Variable nodes which point back to abstraction nodes which have not
been forwarded are treated as terminal nodes in the graph.

This simple version of A-normal B-reduction of A-G-wfls will not suffice in all situations
In the case where the operator (the abstraction) of the 3-redex is pointed at by muore
than one node (not counting the bound variable back pointers), a portion of the
abstraction’s body must be copied before the contraction can take place If this copying
is not performed, erroneous results may occur  As an example of this situation, observe

the following M-G-wff:

2 Arvind, 1n a paper which reviews several graph oriented interpreters ([Arvind 1984] 1. in-
correctly states that all leaves of the operator must be searched for scenrrences of the abstraction's
bound variable Arvind (mistakeniy) thinks that many {one for each bound vaniable) indirection
arcs to the operand are placed 1n the body of the operater  Instead, just one indirection are {rom
the abstraction's root to the operand, 1s required
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A S-reduction cannot be safely performed on this \-G-wff
Figure 1.3
Note the cveles in this non \-G-wfl
Figure 1.4

In order to insure a proper ,J-contraction. some copyving must take place before the con-

13, then the result would not be a A-G
traction is attempted
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The M\-G-wil in Figure 1.3 after copving

Figure 1.5

The result is the

A fB-reduction may be safely performed on the graph displayed above

A-G-wil:
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Figure 1.6

The parts of the body which do not contain free occurrences of the bound variable are

called the abstraction’s free expressions

[ree expressions which are not contained i

other free expressions are culled the abstraction’s mazimal fre

[

ezpressions; this name was given to them later in [Hughes 1982a]
expressions of the operator need not be copiled before performing the contraction.

any of the abstraction’s

These maximal f{ree

zy since 1t performs normal order graph redue-

Wadsworth's interpreter is called fully la

tion (making 1t lazy) and avoids repeated reduction of constant expressions (since they

are not copied).

Observe that since some copying must be dore. when a redex exists in the expressions

Wadsworth's ealculus, therefore, 1s not optimal —— 1.e there

copied, 1t will be copied.

For example, consider the

may be shorter reduction sequences ending 1n normal form

expression:

XX (x X)Xy ((Nzz)y)
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»

which. when reduced to normal form 1n Wadsworth's culculus, takes four steps (because
the boldface redex must be copied) I however the boldface redex is reduced first, then
it can be reduced to normal form in only three steps ?

1.6. Summary

Three reduction calculi have been described: the A-calculus, the SKl-calculus, and the - S
G-calculus. The X-calculus looks the most like a programming language. The SKI- _,.::_-:_p
calculus is the simplest. The A-G-calculus appears to be the most implementation J":’:;:‘_
oriented. 7';":-*-:‘-
AT
In the next chapter, two more calculi are presented: the SKI-G-calculus and the LNF- ._"W,’w
calculus. Both are deterministic and “machine oriented””. The SKI-G-calculus is a graph e
oriented version of the SKl-calculus. The LNF-calculus is also graph oriented but con- .:,
tains many more functors and a new class of atomic wfls called constructors. This richer oy
calculus, when realized, yields an efficient runtime system for the LNF language. The :v\‘

runtime system'’s implementation is detailed 1n Chapter 3. Section 4.
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3 Wadsworth, in his thesis, also points out that his calculus s nonoptimal  Unfortunately the
exampie he presents ([Wadsworth 1971), page 187) which purports to demonstrate this fact does
not do so
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Chapter 2

Two Deterministic Graph Oriented Reduction Calculi

The LNF Language’s run-time system (its Lisp Machine implementation 1s detailed in
Chapter 3) 1s a realization of a deterministic reduction calculus cailed the LNF-calculus.
The LNF-calculus is based on another deterministic reduction calculus called ! > SIT-G-
calculus. Both calculi are given formal definitions in this chapter.

The SKI-G-calculus is presented first. The SKI-G-calculus, like Wadsworth’s \-G-
calculus ([Wadsworth 1971]), is graph oriented. Instead of being based on the M-calculus,
however, the SKI-G-calculus is a modification of the SKKi-calculus.

I In essence, the SKI-G-calculus is a formalization of the “normal order combinator graph
‘: reduction” machine informally described in [Turner 1979¢]. The calculus’ description
! although similar in style to Wadsworth’s description of the A-G-calculus, is much more
“machine oriented” than Wadsworth’s. For example, Wadsworth relegates forwarding
arcs - forwarding arcs are also often referred e ns indirection pointers or invisible
pointers — to his implementation ~f the -alcuius wnd does not even mention garbage
: nodes in lus discussions. On the other hund o the SKI-G-ealeulus, garbage vertices and
‘: ferwarding arcs are given forma Adetinnoas T definnions of SKI-Gowt and SKI-G-
’ mmr, faken together come verv elase too ez s nnniementaton of the SKI-Gecolonius
! sowel e s defioatien
[t s cfwimed. but not proved, that the determun- e SKI-Gecaleulus s comyputationaily
equividlent to the {nondeterministic; SKI-calcains fand, of course. to the N-calcuius et
al

As stated above, the LNF-calculus s bised on the SKI-G-raieulus. Its set of wils (LNF-
wil) contains SIKI-G-wil. LNF-wil wontams SKI-G-wil by virtue of the fact that LNF-
calculus’ set of functors {combinators. prinntive operators) contains SKI-G-calculus’
functor set. The LNF-caleulus has, in addition to Schonhnkel’s functors S, K, and |
([Schonfinkel 1924]); Curry's B. C. and W {[Curry 1958]); Turner's 3' and C', Scheevels
B’ ([Turner 1979a] and [Turner 1984]). numerie functors, boolean functors, and a few
others of the author’s design. Besides the addition of these new functors, new atoms,
called constructors, are introduced into LNF-wiT
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The “immediately reducible to” relation of the LNF-calculus (LNF-imr) differs from
SKI-G-imr in the following three ways. Firstly, LNF-imr does not contain SKI-G-imr —
i.e. there are wiffs which are reducible in the SKI-G-calculus but irreducible in the LNF-
calculus. These are exactly those wfls in SKI-G-lazy-normal form (containing no initial
redex) but containing redexes elsewhere. In sum, many of the reduction contexts present
in the SKI-G-calculus do not exist in the LNF-calculus. Recall that a reduction context is
a context inside which a reduction is permitted to take place. These reduction contexts
are specified by the contextual reduction rules of a calculus. Secondly, the new functors
bring with them new ways of reducing the LNF-wffs having them as initial atoms — via
new substantive reduction rules. Lastly, the new functors (“making up for” the lack of
general reduction contexts present) bring with them new “functor specific”’ reduction
contexts — via new contextual reduction rules. The end result is a lazy “immediately
reducible to” relation which allows “just enough reduction to get the job done”. The
addition of the constructors does not substantively affect the “immediately reducible to”
relation. However, their addition (by increasing the size of the set of well-formed formu-
las) indirectly extends LNF-imr.

The LNF-calculus, of course, does not have any more computational power than the oth-
er calculi defined herein — it is, however, a few steps nearer the “directly and efficiently
implementzble’ end of the reduction calculus spectrum than the others. It is hoped that
a calculus which bridges the gap between traditionally defined formal calculi and their

implementations will be easier to implement and its implementation easier to reason
about.

The notions of initial-redex and lazy-normal form, as defined in the SKl-calculus, have
corresponding definitions in the SII-G-calculus and the LNF-calculus. Thesé concepts
figure prominently in the organization of the two calcull.

2.1. The SKI-G-calculus

The SKI-G-calculus is a graph oriented version of Schénfinkel’s SKl-calculus.

2.1.1. Well-formed Formulas

As SKI-G-calculus well-formed formulas (SKI-G-wfls) are defined in terms of graphs, the
graph related conventions which will be used are described below.

A graph is defined by a set of vertices and a set of arcs. Identifiers denoting vertices are
written in lowercase while identifiers representing sets of vertices are written in upper-
case. Just as in the preceding chapter, wils are also denoted by uppercase identifiers. An
arc having origin v, and destination v, is written as the ordered pair <v,v,>. Paths
are sequences of arcs (possibly empty) of the form:

<V‘,V2>,<V2,V3>, ce ey <vn—27vn—l>v<vn-1)vn >.

A vertex v, is said to be accessible from v, if there is a path from v, to v,. Hence,
each vertex is accessible from itself via the path of length 0. For rooted graphs G (those
which contain a vertex designated as the root), the set of vertices accessible from the
root is represented by the expression ACCESSIBLE-VS[G].
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Definition 2.1: An SK/-G-wff X is a finite rooted graph represented by the sextuple
<VS,RATOR,RAND FWD ATOM, root> where:
(and

VS is the (finite) set of vertices of X
RATOR, RAND, and FWD are sets of arcs —
together these sets partition the set of arcs of X
ATOM is a nonempty partial function from VS8 to {S K I}
root is the vertex in VS designated as X’s root
For all vertices v € VS,
(and the out degree of v is either 0, 1, or 2
in case v’s out degree is 0
then ATOM|[v] defined
in case v's out degree is 1, then
(and the arc having origin v lies in FWD
ATOMI[v] undefined)
in case v’s out degree is 2, then
one of the arcs having origin v lies
in RATOR, the other in RAND, and
ATOM]|v] undefined,
there is no non-empty path from v to v,
all the arcs of which are in FWD)
there is a v € V8 such that:
(and v is accessible from root
v has out degree 0 or 2))

Note that variables are not a part of this calculus. They have been excluded as only
closed \-wfls are transformed into SKI-G-wfls. Well-formed LNF programs will not con:
tain occurrences of free variables. Since the transformation replaces all occurrences of
bound variables with SKI-G-wffs not containing variables, and there are no free
occurrences of variables in the \-wff being transformed (it is closed), the resulting SKI-
G-wif will not contain any variables at all.

Definition 2.2: Let X = <VSRATOR RAND FWD ATOM root> be an SKI-G-
wil.

The root of X (ROOT[X]) is root.

The set of vertices of X (VS[X]) is VS.

The rator arc set of X (RATOR[X]) s RATOR.

The rand arc set of X (RAND[X]) is RAND

The forwarding arc set of X (FWD[X]) 1s FWD

The atom function of X (ATOM[X]i s ATOM.

Note that the definition of SKI-G-wil does not require that each vertex of an SKI-G-wfl
be accessible from the SKI-G-wfl's root It does require, however, that all vertices in an
SKI-G-wff’s vertex set, accessible or not, be eligible for “roothood™ — 1.e. let X be an
SKI-G-wfl and let v be any vertex in VS[X]. It can be shown that the graph, which is
just like the SKI-G-wff X except that it has v lor a root, also qualifies as an SKI-G-wfl.
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Definition 2.3: Let X be an SKI-G-wff. The vertices in VS[X] which are inaccessible
from X's root (not in ACCESSIBLE-VS[X]) are the garbage of X. This set of ver-
tices is denoted by the expression GARBA GE[X].

Definition 2.4: Let X be an SKI-G-wfl. X is clean {CLEAN-P[X]) iff VS[X] =
ACCESSIBLE-VS[X].

An SKI-G-wfl <VS RATOR,RAND FWD ATOM,root> is represented on paper as
follows. A vertex v having out degree O is represented by the functor ATOM{[v]. A
vertex v having out degree 1 (a forwarding vertex) is represented by a dot (e) having one
dotted arrow (representing the arc <v,fwdv> in FWD) pointing at the representation
of fwdv. A vertex having out degree 2 is represented by a dot having two arrows -
representing the two arcs which emanate from it <v,rtr> (left arrow) and <v,rnd>
(right arrow) - which point at the representations of rtr and rnd. The vertex root is
often labeled with the string “ROOT:”. Often cther vertices are given labels to ease
reference. See the figures below for some examples of this representation.

ROOT: x v K

The SKI-G-wil: <{v,vo},{},{},{} {<vI>,<vo,K>}vi>
Figure 2.1

Note that the vertex v, in the above diagram is a garbage vertex. It is garbage since it
is inaccessible from the ront (v ().
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RoOOT: ol

An SKI-G-wff with Some Forwarding Vertices and Some Shared Subformulas
Figure 2.3

This representation is a good cne as it allows one to observe the SKI-G-wfl's structure at
a glance. With 1t one can easily identify a wil's garbage, root, shared subformulas, and
cycles. Often, however, because this representation is so difficult to typeset, SKI-G-wfls
are displayed linearly — just hike SKI-wifs. When using this linear representaticn. gar-
bage and forwarding nodes are ignored completely. shared structures are undetectablie.
and cycles are unrepresentable. This linear display is used only when these aspects of
the wff are not important.

Let <VS,RATOR RAND FWD ATOM roat> be an SKI-G-wff. Viewing the arc
sets RATOR, RAND, and FWD as functions from vertices to vertices is sometimes
useful. Let S be either RATOR, RAND, or FWD. For all ares <v,v;> in S, S[v,]
= vy. Let F be a function with domain D. If SD is a subset of D, then the restriction
of F to sub-domain SD is written F|SD.

Definition 2.5: Let X be an SKI-G-wfl. The clean SKI-G-wff in X is CLEAN[X] where:
CLEAN[X] 2

<VS' RATOR' RAND' FWD' ATOM' ROOT[X]>
where

VS' s ACCESSIBLE-VS{X] &

RATOR' is RATOR[X]|VS' &

RAND' s RANDX]|VS' &

FWD' s FWDX]VS' &

ATOM' is ATOMX]|VS'
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RooT:

2 *

CLEANed Version of the SKI-G-wff in Figure 2.3
Figure 2.4

The definition of the function CLEAN might be viewed as a very high level specification
of a garbage collector. By providing different realizations of the predicate ACCESSIBLE
and the function restricting operator |, one is able to create different implementations of
the specification.

Definition 2.8: Let X be an SKI-G-wff and let v be a vertex in VS[X]. The vertex v is
forwarded to v in X (also FORWARDED-P[v X], FORWARDED-TO[vX] = v') iff
<v,v' > € FWD[X].

Definition 2.7: Let X be an SKI-G-wfl. X is compact (COMPACT-P[X]) iff for all ver-
tices v € VS[X], FORWARDED-P[v,X] implies v € GARBAGE[X].

The following definition defines a function (COMPRESS) which removes one source of
indirection in an SKI-G-wff containing a forwarding arc. It does so by replacing all arcs
which point at the forwarded vertex with arcs which point at the vertex to which the
forwarded vertex points.

Definition 2.8: Let X be an SKI-G-wff. Let v € VS[X] such that FORWARDED-

P[v,X]. The SKI-G-wff contained in X compressed at v is COMPRESS[v,X], where
COMPRESS[v X] X

< VS[X],RATOR,RAND,FWD ATOM[X],root >
where

RATOR is RATOR[X]

with all ares of the form <u,v>

replaced with <u,FORWARDED-TO[v X]> &
RAND is RAND[X]

with all ares of the form <u,v>

replaced with <u,FORWARDED TO[vX]> &
FWD is FWD([X]

with all arcs of the form <u,v>

replaced with <u,FORWARDED-TO[v X]> &
root s (if (not ROOT[X] = v)

then ROOT[X]
else FORWARDED-TOv,X])
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COMPRESS od
a+t

AN

An Example of COMPRESSion
Figure 2.5

Note that although all of the arcs whose destination had been the forwarding vertex
have been removed, the forwarding vertex and its forwarding arc have not. The for-
warding vertex is now tnaccessible from the root of the new SKI-G-wff. It therefore is
part of the garbage of the compressed SIN[-G-w(T.

The next function (COMPACT), defined in terms of COMPRESS, makes all sources of

indirection (all forwarding vertices) into garbage.

Definition 2.9: Let X be an SKI-G-wf. The compact SKI-G-wff contained in X is
(COMPACTIX]) where:
COMPACT[X] ¢
(if COMPACT-P[X]
then X
else
(let v be
(a vertex in VS[X] such that there is
an arc <v,vfwd> in FWD[X])
in COMPACT[COMPRESS[v.X]]))
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CONPACTed Version of the SKEFG-wif in Figure 2.3
Figure 2.8
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Although not proved here, it can be shown that the functions CLEAN and COMPACT
really do produce SKI-G-wffs. As will be seen in subsequent chapters, the LNF compiler N
produces clean compact SKI-G-wfls (actually. it produces clean compact LNF-wfls) from N
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user input.

Definition 2.10: Let X be an SKI-G-wfi. X is a combination (COMBINATION-PX])
iff there is an arc in RATOR[X] (which implies there is an arc in RAND[X] also)
whose origin is in ACCESSIBLE-VS[X]. X is an atom (ATOM-P[X]) iff it is not a
combination.

Note that an atomic SKI-G-wfl (a wfl A such that ATOM-P[A]) may contain more than
one accessible vertex. There may be a path, composed exclusively of forwarding arcs,
from the root to a vertex which is mapped by the wff’s atom function to one of the func-
tors: S, K, or L.

Definition 2.11: Let X be an SKI-G-wfl and let v be in VS[X]. The SKI-G-uwff
described in X rooted at v is (SKI-G-WFF[X,v]) where
SKI-G-WFF[X,v] &

< VS[X],RATOR[X], RAND[X],F WD [X] ATOM[X],v >

If v in (ACCESSIBLE-VS[X]), then SKI-G-WFF[X,v] is called the subformula of X
rooted at v or SUBFORMULA[X,v].

The subformula of an SKI-G-wfl X rooted at v (call it X') is often referred to as, simply,
a subformula of X. It is also said that X contains X' or X' occurs in X. It is impor-
tant to observe that for any SKI-wff X and any Y which is a subformula of X the sets
VS[X] and VS[Y] are identical. Besides the subformulas of X, there are other SKI-G-wfls
described by X. These are the SKI-G-wfls which are rooted at the vertices in
GARBAGE[X].

Definition 2.12: Let X be an SKI-G-wfl. If X is a combination, then there are two (not
necessarily distinct) immediate subformulas of X:
OPERATOR[X] >
(if FORWARDED-P[ROOT[X],X]
then OPERATOR [SUBFORMULA[X,FORWARDED-TO[ROOT[X],X]]]
else SUBFORMULA [X,RATOR[X][ROOTX]]])

OPERAND[X] 2

(if FORWARDED-P[ROOT[X],X]
then OPERAND [SUBFORMULA [X,FORWARDED-TO[ROOT [X],X]]]
else SUBFORMULA [X,RAND [X][ROOT[X]]])

Observe that RATOR[X][ROOT[X]] (RAND[X]J[ROOT[X]]) is the result of applying the
function RATOR[X] (RAND[X]) to the vertex specified by ROOT{X].

It is hoped that no confusion will arise due to the author’s overloading of the predicates:
COMBINATION-P and ATOM-P, and the functions: OPERATOR and OPERAND. It
should always be clear from the context which calculus, and therefore which predicate
(or function), is being referenced.
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Definition 2.13: Let X be a combination. Let X' be the subformula of X rooted at v.
If there is more than one path from ROOT{X] to v in X, then X' is a shared subfor-
mula of X (SHARED-P[X' X]).

Definition 2.14: An SKI-G-wfl X contains a cycle if there is a path (having length
greater than 0) from an accessible vertex v to itself.

Definition 2.15: If an SKI-G-wff X does not contain any cycles, then applying the func-
tion GRAPH-TO-STRING to X yields an SKI-wff (called the linear transform of X).
GRAPH-TO-STRING[X] =

(let root be ROOT[X] in
(if FORWARDED-P[root, X]
then GRAPH-TO-STRING [SUBFORMULA[X,FORWARDED-TO{root X]]]
elseif ATOM-P[X]
then ATOM[X][root]
else ;; X is a combination
(GRAPH-TO-STRING[OPERATOR[X]] GRAPH-TO-STRING[OPERAND [X]])))!

RooT: ]

ST K (S K) is the Linear Transform of the Above SKI-G-wff
Figure 2.7

Note that an SKI-G-wff’s garbage is not a factor in this transformation. Also, forward-
ing vertices and their arcs are used only as “indirection pointers” by GRAPH-TO-
STRING. Any shared subformula in the SKI-G-wff is transformed into multiple
occurrences of the subformula in the SKI-wfl.

Definition 2.18: Let X and Y be acyclic SKI-G-wfls. X is synonymous with Y iff
(SYNONYMOUS-P[X,Y]) where
SYNONYMOUS-P[X,Y] =%

GRAPH-TO-STRING[X] = GRAPH-TO-STRING[Y]

I On the confusing syntax — the two preceding right parentheses are part of the syntax of the
definition, while the left and right parentheses enclosing the expressions GRAPH-TO-
STRING[OPERATOR(X]] and GRAPH-TO-STRING[OPERAND(X]] are part of the result
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Theorem 2.1: Any acyclic SKI-G-wff may be COMPACTed and then CLEANed to pro-
duce a clean compact synonymous SKI-G-wfl. The proof follows directly from the
definitions of the functions CLEAN, COMPACT, and GRAPH-TO-STRING.

Definition 2.17: Let a be a functor (which is an SKI-wff). The atomic graphical
transform of a is ATOMIC-GRAPH][a] where:
ATOMIC-GRAPH[a] &

(let nv be a new vertex in

<{ov},{3L{}{}{<nv,a>}nv>)

Definition 2.18: Let X and Y be SKI-G-wffls. X and Y are compatible if
COMPATIBLE-P[XY] where:
COMPATIBLE-P[X,Y] &
(or VSEX] N VS[Y] =8
X is a subformula of Y
Y is a subformula of X)

Definition 2.19: Let X and Y be compatible SKI-G-wffs. The combination of X and Y
is COMBINE[X,Y] where:
COMBINE[X,Y] =

(let root be a new vertex in
< VS[X] U VS[Y] U {root},
RATOR[X] U RATOR[Y] U {<root,ROOT[X]>},
RAND[X] U RAND[Y] U {<root,ROOT[Y]>}
FWD[X] u FWDJY],
ATOM[X] U ATOM(Y],
root>)

Definition 2.20: Let X be an SKI-wfl. The graphical transform of X is the SKI-G-wff
STRING-TO-GRAPH[X] where
STRING-TO-GRAPH[X] &/
(if ATOM-P[X]
then ATOMIC-GRAPH([X]
else ;; X is a combination
(let opr be STRING-TO-GRAPH[OPERATOR[X]] &
opd be STRING-TO-GRAPH[OPERAND[X]] in

;; opr and opd share no vertices, so they are compatible
COMBINE [opr,opd]))

Incompatible SKI-G-wfls are not COMBINEd as the resulting graph may not be an SKI-
G-wfl. This is so because the definition of SKI-G-wfl does not prevent two SKI-G-wffs
from having the same vertex set and inconsistent arc sets at the same time.

For any two composable functions F and G, F oG represents their composition. For
any function F capable of being composed with itself, F" is the function created by com-
posing F with itself n times. That is:

F* = FoFo..oF,

where there are n Fs to the right of the equal sign. F° is the identity function.
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It can be shown that the graphical transform of an SKI-wff is a clean compact SKI-G-wif
without shared subformulas. It can also be shown that, given an SKI-wff X 2and its
graphical transform Y, the linear transform of Y s X. That is to say, GRAPH-TO-
STRING o STRING-TO-GRAPH 1s the 1dentity function on SKI-wffs. It is not the case,
however, that STRING-TO-GRAPH > GRAPH-TO-STRING is the 1dentity function on
SKI-G-wffs. Applied to a clean compact SKI-G-wfl Y having no cycles and no
confluences (no shared subformulas), however. an SKI-G-wff Y' isomorphic to Y is pro-
duced. The only difference between Y and Y’ {their graphs will appear identical when
displayed) is their vertex sets. As the functions ATOMIC-GRAPH and COMBINE (the
functions STRING-TO-GRAPH 1s defined in terms of) always use new vertices, the ver-
tex sets will be necessarily disjoint.

Definition 2.21: Let X be an SKI-G-wfl. The inatial atom of X is (INITIAL-ATOM[X])
where:
INITIAL-ATOM[X] =

(let root be ROOT([X] tn
(if FORWARDED-P[root, X]
then INITIAL-ATOM[SUBFORMULA [X,FORWARDED-TO(root,X]]]
elseif ATOM-P[X]
then ATOM][root]
else ;; X is a combination
INITIAL-ATOM[OPERATOR[X]]))

Definition 2.22: Let X be an SKI-G-wfl. The number of arguments of X is (NUMBER-
OF-ARGS[X]) where:
NUMBER-OF-ARGS[X] 2/

(let root be ROOTI[X] in
(f FORWARDED-P[root,X]
then NUMBER-OF-ARGS[SUBFORMULA [X.FORWARDED-TO([root X]]]
elseif ATOM-P[X]
then O
else ;; X is a combination

(+ 1 NUMBER-OF-ARGS[OPERATOR[X]])))

Definition 2.23: Let X be an SKI-G-wff If 1<n<NUMBER-OF-ARGS[X]. then the
nth argument of X is ARG[n,X] where:
ARG[n X] X
(let numargs be NUMBER-OF-ARGS[X] in
OPERAND c OPERATOR®"!™m28s-n[X1)

2.1.2. Reduction

The “immediately reducible to” relation of the SKI-G-calculus (SKI-G-imrt) mirrors the
SKI-normal-imr relation on SKI-wfls presented in the preceding chapter That is to say
reduction in the SKI-G-calculus proceeds by contracting the graphical redex correspond-
ing to the SKI-calculus’ leftmost SIKKI-redex. Thus, like the calculus characterized by the
set of wfls SKI-wff and ‘““immediately reducible to” relation SKl-normal-imr, the SKI-G-
calculus is deterministic.
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Some preliminary concepts are presented prior to the definition of SKI-G-imr.
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Definition 2.24: Let X be a combination whose root i1s not forwarded. Let Y be an
SKI-G-wfl compatible with (but different from) X. The SKI-G-wff which results from
forwarding the roct of X to the root of Y i1s FORWARD-COMB[X,Y] where:
FORWARD-COMB[X Y] 2¢

(let rootx be ROOTX] in
(let rtrx be RATOR[X][rootx] &
rndx be RAND[X][rootx] in
<VS[X] U VS[Y],
RATOR[X] U RATORT[Y] - { <rootx,rtrx > ;.
RAND[X] U RAND[Y] - { <rootx,rndx:> }
FWD[X] U FWD[Y] U { <rootx ROOT[Y]>}.
’. ATOM[X] U ATOM[Y],
rootx>))

L 4

v W F N -TEEEENTW W TR TR A BB S B T STy WY W N &

A note on the restriction, in the previous definition. that Y must be different from X: Y
cannot be X nor can Y’s root be forwarded (via one or more arcs) to X’s root. Forward-
ing X to such a wff would create a graph which is not an SKI-G-wff.

The reason for merging only compatible wffs is the same as that for COMBINing only
compatible wffs — i.e. the graph that results from merging incompatible wffs may not be
a wff at all.2

Note that combination forwarding makes garbage out of vertices which were previously
accessible only from rtrx or rndx.

T

|
RegT: o RooT:
// I . 5 T
K \( K / .
BEFORE AFTER

An Example of Combination Forwarding
Figure 2.8

2 In the implementation, all wfls are compatible Therefcre there is no need to check for compa-
tibility before performing a forwarding operation »r before COMBINIng two wfls
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Definition 2.25: Let X be an SKI-G-wfl. X is an SKI-G-S redez if SKI-G-S5-REDEX-
P[X] where:
SKI-G-S-REDEX-P[X] =
(and (not FORWARDED-P[ROOT [X] X])
INITIAL-ATOM[X] = S
NUMBER-OF-ARGS[X] = 3)

Definition 2.26: Let X be an SKI-G-S redex. The SKI-G-wff Y is the SKI-G-S reduc-

tum of X if SKI-G-S-REDUCTUM[X] = Y (X SKI-G-S-imr Y) where:
SKI-G-S-REDUCTUM[X] 2%
(let root be ROOTX] &
ff be ROOT[ARG[1.X]] &
rg be ROOT[ARG[2X]] &
rx be ROOT[ARG[3X]] &
nv, be a new vertex &
nv, be a new vertex in
<VS[X] U {nv,,nv,},
RATOR[X]|(VS{X]-{root}) U { <root,nv,>,<nv,rf>, <nvyrg>},
RAND[X]|(VS[X]-{root}) U {<root,nvs>,<nv,rx>,<nve,rx>},
FWD[X],
ATOM[X],
root>)
ROOT: RoOT:
e '
. \ /
/ \ /‘\
S /a\ S
VAWAN /C\ g Zx\
REDEX REDUCTUM |
An Example of SKI-G-S Reduction

Figure 2.9

> The figure above demands some explanation. The vertices labeled n, and n, denote the
e new vertices present in the reductum. The labeled triangles in the above figure (and the
S:': figures to follow) represent whole SKKI-G-wfls. This representation is a little bit deceiv-

-";' ing. These wffs may contain arcs pointing at the other vertices — e.g. the triangle

labeled x may contain arcs pointing at vertices in the wi{l represented by the triangle
labeled g (even though no such arcs appear in the representation). Thus, some of the

vertices which appear from the figure to be ‘naccessible from the root may, in fact, be
accessible.
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Definition 2.27: Let X be an SKI-G-wfl. X is an SKI-G-K redez if SKI-G-K-REDEX-
P[X] where:
SKI-G-K-REDEX-P[X] ¢
(and (not FORWARDED-P[ROOT [X] X))
INITIAL-ATOM[X] = K
NUMBER-OF-ARGS[X] = 2)

Definition 2.28: Let X be an SKI-G-K redex. The SKI-G-wff Y is the SKI-G-K reduc-
tum of X if SKI-G-K-REDUCTUM[X] = Y (X SKI-G-K-imr Y) where:
SKI-G-K-REDUCTUM[X] =

FORWARD-COMB[X,ARG[1 X]]

The last two definitions are good examples of the close relationship between the
definitions of concepts in this formal calculus and the functions which implement them.
These definitions can be (almost trivially) realized in most programming languages.

Note that in the definition of SKI-G-K-REDUCTUM, the SKI-G-K redex is forwarded to
its first argument. There is a subtle reason for this. One might think that the use of
the forwarding pointer could be obviated by simply replacing the RATOR and RAND
potnters of the redex with the RATOR and RAND pointers of the first argument. How-
ever, If this 1s done and if the first argument is itself a redex, this replacement would
create a duplicate redex. Forming duplicate redexes violates the property of full laziness
— that states that every expression is reduced at most once.
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An Example of Proper SKI-G-K Reduction
Figure 2.10
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REDE X
An Example of Improper SKI-G-K Reduction
Figure 2.11

Definition 2.29: Let X be an SKI-G-wff. X is an SKI-G-I redez if SKI-G-I-REDEX-
P[X] where:
SKI-G-I-REDEX-P[X] oo
(and (not FORWARDED-PROOT [X] X])
INITIAL-ATOM[X] = |
NUMBER-OF-ARGS[X] = 1)

Definition 2.30: Let X be an SKI-G-I redex. The SKI-G-wff Y i1s the SKI-G-I reductum
of X if SKI-G-I-REDUCTUMIX] = Y. (X SKI-G-I-imr Y) where:
SKI-G-I-REDUCTUM[X] Def

FORWARD-COMB[X,ARG(1,X]]

A0

REDEX REDUCTLA

An Example of SKI-G-I Reduction
Figure 2.12

Note that if X R Y, where R is either SKI-G-S-imr, SKI-G-K-imr, or SKI-G-I-imr, then
VS[Y] contains VS[X]. Reductions do not discard vertices.

[t is often convenient, just as with SKI-G-wffs, to express the relations SKI-G-S-imr,
SKI-G-K-imr, and SKI-G-I-imr linearly. Written in this manner, they are, respectively:

SXYZ—~X2Z(YZ2)
KXY —-X
IX—-X
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Of course, the relations, expressed linearly, are subject to the same problems as are
linear representations of SKI-G-wffs:

e Shared subformulas appear as duplicate subformulas (e.g. in the S reduction rule, the
wfls denoted by Z are actually the same wfl)

e Forwarding arcs are invisible (e.g. in the K and I reduction rules, the root of the wff
denoted by X is a forwarding vertex)

These relations, like their linear counterparts in the SKl-calculus, are also often referred
to as substantive reduction rules, as each specifies a redex-reductum pair.

Definition 2.31: Each functor has an arity determined by its reduction rule. The arity
of a functor f (ARITY[f]) having reduction rule: f X, - - - X; — Z is n. S, therefore,
has arity 3, K has arity 2, and [ has arity 1.

In the LNF-calculus, some functors are characterized by more than one reduction rule.
These functors’ rules, however, always require the same number of arguments. Thus
such a functor’s arity may be determined by examining any one of its rules.

Hereafter, for conciseness (in contexts in which no confusion will arise) the “SKI-G-”
prefix may be dropped from such identifiers as: SKI-G-wff, SKI-G-S-REDEX-P, SKI-G-
K-imr, etc.

Definition 2.32: Let X be an SKI-G-wfl. X is an SKI-G redez iff SKI-G-REDEX-P[X]
where

SKI-G-REDEX-P[X] 2f
(or S-REDEX-P[X] K-REDEX-P[X] I-REDEX-P{X])

Definition 2.33: Let X be an SKI-G-wff. X contains an initial redezx iff
(or SKI-G-REDEX-P[X]
OPERATOR(X] contains an initial redex)

Definition 2.34: Let X be an SKI-G-wff. X is in SKI-G-lazy-normal form iff SKI-G-
LAZY-NF-P[X] where
SKI-G-LAZY-NF-P[X] Eod

X does not contain an initial redex

The definition of SKI-G-imr (next) is a bit long and complicated. It is complicated by the
presence of forwarding pointers and the fact that, because of shared subformulas and
cycles in the wff, redex contractions can be a bit more difficult to formalize than in a
string oriented calculus. However, the informal description of the relation is quite simple
to comprehend. Informally, an SKI-G-wff X reduces immediately to Y iff either
<X,Y > is a redex-reductum pair or X contains a leftmost redex and Y is the wff which
results from contracting this redex.
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Definition 2.35: Given SKI-G-wfls X and Y. X immediately reduces to Y iff X SKI-G-

imr Y where
X SKI-G-imr Y 2¢
(let xroot be ROOT[X] in
(if FORWARDED-P [xroot X]
then (let yroot be ROOT(Y] in
(and FORWARDED-P [yroot.Y]
Xxroot = yroot
(SUBFORMULA [X,FORWARDED-TO[xroot,X]]
SKI-G-imr
SUBFORMULA[Y FORWARDED-TO{yroot,Y]})))
elseif (not LAZY-NF-P[X])
then (or X S-imr Y
X K-imrY
XIimrY
(and COMBINATION-P[X]
(there is a Yopg € SKI-G-wfl such that
(and OPERATOR[X] SKI-G-imr Yopg
Y = SKI-G-WFF[Ygpg,xroot])))
else ;; X does not contain an initial redex
(and COMBINATION-P[X]
(there is an i € 1,... NUM-ARGS[X]
and an SKI-G-wfl Y gg, such that
(and ARG[i,X] SKI-G-imr Y p¢,
Y = SKI-G-WFF [Y'ARG‘,XI'OOT,]
there isn’t a j € 1,...,i-1 such that
ARG}, X] is reducible))))
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An Example of SKI-G Reduction
Figure 2,13

Definition 2.38: SK/-G-red is the transitive closure of SKI-G-imr.

Definition 2.37: SKI-G-red* is the reflexive transitive closure of SKI-G-imr.
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Definition 2.38: Let X be an SKI-G-wff. X is in SKI-G-normal form ff SKI-G-NF-
P[X] where
SKI-G-NF-P[X] =
no subformula of X is an SKI-G-REDEX

Definition 2.39: Let X be an SKI-G-wff which is not in SKI-G-normal form. The left-
most redez of X is LEFTMOST-REDEX[X] where:
LEFTMOST-REDEX[X] ¢
(if REDEX-P[X]
then X
elseif OPERATOR [X] contains a redex
then LEFTMOST-REDEX[OPERATOR [X]]
else ;; OPERAND(X] contains a redex
LEFTMOST-REDEX[OPERAND[X]])

Note that the SKI-G-calculus is deterministic. For any SKI-G-wff X, there is only one
reduction sequence starting at X. This is true because each reduction step involves con-
tracting the wfl’s leftmost redex, which (if it exists) is unique. Moreover, f X has an
SKI-G-normal form, then it is arrived at by first being reduced to SKI-G-lazy-normal
form. Each argument, in turn, is then reduced to SKI-G-normal form.

The following results show that any SKI-calculus reduction sequence3 (and therefore any
A-calculus reducticn sequence? ) can be simulated by a reduction sequence (often involv-
ing fewer reductions) in the SKI-G-calculus. These results also demonstrate that any
SKI-G-calculus reduction can be simulated in the SKl-calculus. Thus, the SKI-G-
calculus is shown to be equivalent in power to the SKl-calculus, the A-calculus, et al.

Lemima 2.1: Let SKI-X be a variable-fiee SKI-wff. If SKI-X SKl-normal-imr SKI-Y,
then there is an SKI-G-Y € SKI-G-wff such that STRING-TO-GRAPH[SKI-X]
SKI-G-imr SKI-G-Y and SKI-Y = GRAPH-TO-STRING[SKI-G-Y].

Proof Sketch:

STRING-TO-GRAPH preserves redexes. Thus, the leftmost redex in SKI-X, which
when contracted yields SKI-Y, will have a counterpart in STRING-TO-
GRAPH[SKI-X] (SKI-G-X) which will also be a leftmost redex. Contracting this
redex, yielding SKI-G-Y, will have no effect on the rest of the graph SKI-G-X as it
does not contain any confluences or cycles. Thus. since the redex-reductum pairs of
the SKI-G-calculus mirror the redex-reductum pairs in the SKl-calculus, the string
transform of SKI-G-Y will be SKI-Y.

End Sketch

The previous lemma demonstrates that a single reduction step in the SKl-calculus can be
simulated by a single reduction step in the SKI-G-calculus. The next lemma states that
a single reduction step in the SKI-G-calculus can be simulated by one or more reduction
steps in the SKl-calculus.

3 with the restriction that the mmitial SKI-wfl in the sequence dces not contain any variables
4 with the restriction that the initial - wff1s closed
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Lemma 2.2: Let SKI-G-X be an SKI-G-wff. If SKI-G-X SKI-G-imr SKI-G-Y, then
GRAPH-TO-STRING[SKI-G-X] SKI-red GRAPH-TO-STRING[SKI-G-Y].

Proof Sketch:
The SKI-wff GRAPH-TO-STRING[SKI-G-X] (SKI-X) contains N copies of each
subformula of SKI-G-X having N distinct paths from SKI-G-X's root to the root of
the subformula. In particular, if there are M distinct paths from SKI-G-X’s root to
the root of the redex contracted, then the SKKI-wff SKI-X contains M copies of this
redex. Each of these M redexes must be contracted as the SKI-wff GRAPH-TO-
STRING([SKI-G-Y] (SKI-Y) will contain M copies of the redex’s reductum. The
SKI-wffs SKI-X and SKI-Y will therefore stand in the relation SKl-red if these M
redexes are all contracted.

End Sketch

The following two conjectures claim equivalence between the SKl-calculus and the SKI-
G-calculus.

Conjecture 2.1: Let SKI-X be a variable-free SKI-wff. If SKI-X SKI-normal-red
SKI-Y, where SKI-Y in SKI-normal form, then there is an SKI-G-Y € SKI-G-wff
in SKI-G-normal form such that STRING-TO-GRAPH[SKI-X] SKI-G-red SKI-G-Y
and SKI-Y = GRAPH-TO-STRING[SKI-G-Y].

Proof Sketch:

The reduction sequence in the SKI-G-calculus would mirror the reduction sequence in
the SKl-calculus with the following exception. In an SKI-calculus reduction step
redexes are often copied (e.g. any redex in Z after the step: SXY Z — X Z (Y 2)).
On the other hand, redexes are never duplicated in an SKI-G-calculus reduction.
Thus, the SKI-G-calculus reduction sequence may be shorter than the ome in the
SKI-calculus — how much shorter depends, of course, on how many redexes are
copied in the SKl-calculus reduction sequence. Note the requirement in the theorem
statement that the SKl-reduction sequence terminates in an SKI-wfl in SKI-normai
form. Some reduction sequences which do not eliminate all redexes cannot be simu-

lated — those which fail to contract the redexes they copy.
End Sketch

It has been informally argued that any SKl-normal reduction sequence resulting in an
SKI-wff in SKI-normal form can be simulated in the SKI-G-calcilus. It remains to show
that all SKI-G-calculus reductions can be simulated in the SKI-calculus.

Conjecture 2.2: Let SKI-G-X be an acyclic SKI-G-wff. If SKI-G-X SKI-G-red SKI-
G-Y, then GRAPH-TO-STRING[SKI-G-X] SKI-red GRAPH-TO-STRING[SKI-G-

Y]

Proof Sketch:
The SKl-calculus reduction sequence which simulates the SKI-G-calculus reduction
sequence will mirror the graph sequence except that it may take more steps (to
reduce the copies of the redexes it has created). There need not be a requirement
that the simulated sequence end in a redex-free graph as no copies of redexes are

created by it.
End Sketch
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2.1.3. On Realizing the SKI-G-calculus

Since any closed A-wfl can be translated into an SKI-G-wff, reduced, and then
transformed back, an SKI-G machine (one which produces SKI-G-wfls in SKI-G-normal
form from arbitrary SKI-G-wffs it has been provided) could be used as the reduction
engine at the core of a functional programming language implementation. This machine
(SKI-G-M) could be buiit from a simpler machine (LNF-M) which accepts SKI-G-wffs as
input and produces SKI-G-wfls in SKI-G-lazy-normal form. An informal definition of
SKI-G-M in terms of LNF-M follows:

SKI-G-M[X] ¢

(leta E, - - - E, be LNF-M[X] in
a SKI-G-M[E,] - - - SKI-G-M[E, ))

Besides being an elegant machine architecture, it has two properties which make it an
efficient one as well. Firstly, the only redexes contracted are initial redexes. These
redexes are easy to locate within a wff as only the “left spine’” of the graph need be
searched. Secondly, having reduced the input wff to lazy-normal form, the structure of
the output wff is known — that is, both its initial atom and number of arguments are
known. Further reductions of the wff only affect the structure of the wff’s arguments.
Thus, having reached lazy-normal form, the initial atom may be output and reduction
started on the arguments.

However, basing the implementation of a usable® functional programming (FP) language
on SKI-G-M (the architecture notwithstanding) is problematic. The two most significant
problems with this approach are:

1. All of the constructs (both in data: like numbers and lists, and in code: like condi-
tional expressions and expressions with auxiliary declarations) programmers have
become accustomed to, and now expect to find in an FP language, must be
represented by SKI-G-wffs.®

2. Translating complex (closed) A\-wffs into SKI-G-wffs creates SKI-G-wffs of unaccept-
able size. The translated SKI-G-wff grows exponentially with the number of nested
abstractions present in the \-wff ([Turner 1979c¢]).

Assuming that the FP language to be implemented is a ‘“‘sugared” version of the \-
calculus, the desugaring process must represent all of the constructs of the language as
X-wffs. For example, natural numbers are data items most programmers would expect to
find in an FP language. These numbers must be represented as \-wfls. Although this
can be done, the resulting wifs are large in size and difficult to manipulate. The arith-
metic operators must be coded as A\-wffs as well. Besides being complex, the desugared
expressions (now A-wfls) have lost something in the process. One cannot distinguish a
desugared numeral from a function — the programmer’s intention has been lost. Any
NUMBER-P predicate, for example, would return TRUE” when provided with any \-wff
taking the form of a natural number representation, even though that was not its

8 capable of running more than the customary set of trivial test programs, not necessarily a pro-
duction quality system

% This is not just a problem with the SKI-G-calculus, of course — all of the other calculi previ-
ously presented also suffer from this malady

7 a \-wff representation of TRUE
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intended use.

The representation problem discussed above, by increasing the size and complexity of
the M-wffs (which then must be translated into SKI-G-wfls), makes the second problem
even more significant.

The LNF-calculus is a directly realizable version of the SKI-G-calculus. The LNF-
calculus, as the reader will see, does not possess either of the problems which prevent the
SKI-G-calculus from being the basis of an efficient programming system.

Ly
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2.2. The LNF-calculus

TN

As mentioned several times, the LNF-calzulus is the reduction calculus which has been
realized in ZetaLisp on a Lisp machine. This realization is the reduction engine of the

FP language LNF.
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Detailed in this section are the modifications made to the SKI-G-calculus which
transform it into the LNF-calculus. The resulting formal system is one that has been
directly impiemented resulting in a usable FP system. The implementation, des-rihed in
detail in Chapter 3, mirrors the definition of the LNF-calculus to follow.
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2.2.1. Constryctions, Functions, and Unknowns
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LNF-wfls, like SKI-wfls and SKI-G-wffs, are either atoms or combinations. Combina-

tions are composite wffs, having an operator and an operand, both of which are LNF-
wils.

4

2

The definition of LNF-wff is identical to that of SKI-G-wfl except for the clause:
ATOM is a nonempty partial function from VS8 to {S K I}
In the definition of LNF-wfl, this clause is replaced with:

ATOM is a nonempty partial function from VS to LNF-FUNCT U LNF-CONS.

’7,
A

PR

Definition 2.40: LNF-FUNCT is the LNF-calculus™ set of functors and LNF-CONS is
the LNF-calculus’ set of constructors. LNF-FUNCT and LNF-CONS partition the
set of identifiers. An identifier is in LNF-FUNCT ff it is associated with a reduction
rule. All other identifiers are in LNF-CONS.

LLL 7
I'l
oy .

';r"?'{‘-"
7
’ s
7
S

°p
.l ll "
P4

-~

L
5

- . L
i
’I"l..'

W 8

0

’

Definition 2.41: Let X be an LNF-wff. If X has initial atom a and a is a constructor,
then X is a construction (CONSTRUCTION-P[X]). If X has initial atom a and a is
a functor and NUMBER-OF-ARGS(X] < ARITY(a], then X is a function
(FUNCTION-PIX]). If X is netther a construction nor a function, then it is an unk-
nown (UNKNOWN-P[X]).
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Hence, all LNF-wfls are either constructions. functions, or unknowns.
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Henceforth, metavariables denoting LNF-wfls will come in different flavors. The follow-
ing table summarizes these new conventions:®

Metavariable LNF-wff Class

ABWXY.Z | LNF-wff of any type
f | Functor
‘ FN | Function
¢ | Constructor
CN | Construction
cf | Constructor or functor
CFN | Construction or function
RDU | Reducible unknown
IMR | In expressions containing RDU, the wff s.t. RDU LNF-imr IMR
IRU | Irreducible unknown
b | TRUE or FALSE
i,j | Integer
s,t | Floating point number
n,m,0 | Floating point number or integer
P | Pair (a wif having the linear representation: PAIR X Y)

LNF-wff Metavariables

Some examples of linear representations of LNF-wffs using this new notation follow:

cn JRU a construction whose first argument is a number and
whose second argument is an irreducible unknown
X, - X, a construction having k£ arguments
+ RDU CFN  an LNF-wfl having initial atom +, a reducible unknown as
first argument, and a construction or function as second
argument
f(cZ) an LNF-wff having a functor as initial atom and a first
argument which is a construction having one argument

In the following sections, the new functors (and their associated reduction rules) will be
presented. The first functors to be presented will be those defined by H.B. Curry and
D.A. Turner.

2.2.2. Curry’s and Turner’s Functors

When translating (closed) \-wffs to SKI-G-wfls, the most significant problem is that the
size of the SKI-G-wff grows exponentially with the number of nested abstractions in the
X\-wfl. This problem is diminished by introducing several new functors and modifying
Schonfinkel’s ABSTRACTion algorithm to make use of them.

H.B. Curry, in [Curry 1958], introduced three new functors (B, C, and W) and a
modified ABSTRACTion algorithm. With this new algorithm, the translated A\-wffs did

8 These new metavariables may appear decorated with subscripts as well.
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R
not grow as rapidly. D.A. Turner claims, in [Turner 1979c¢], that the growth rate is still f.}ﬁ::"
at least quadratic in the number of variables abstracted. D.A. Turner, in [Turner 1979c] NG
and [Turner 1984)], modified the algorithm further by adding three more functors, similar K '
to S, B, and C, which he called S’, B, and C'. Although in the worst case the ]._.7-:
translated A\-wffs still may grow quadratically, in practice most A-wffs only grow linearly "b.:
] when translated. Formal results concerning the growth of translated \-wffs can be ::x;'}\-j\
found in [Kennaway 1982] and [Burton 1982]. Kennaway proves that the wff which .f:-"\_:
L i

results from this transformation grows, in the worst case, at a rate proportional to the -
square of the size of the original A-wfl. Burton gives an algorithm which balances wifs —
unbalanced wffs are the ones which give rise to the quadratric growth. The resulting
balanced wffs grow, when their variables are removed, at only a linear rate. Burton’s
algorithm, however, is restricted to A-wffs in which no abstractions contain global vari-
ables. He claims that any \-wff may be transformed into a \-wff having this prcperty —
but at the cost of (in the worst case) quadratic growth!
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In order to construct LNF-wfls from closed \-wffs, one could use a modified Schonfinkel
algorithm which produces strings and then use the STRING-TO-GRAPH function to

s

o

produce LNF-wfls. Presented below are two functions which together transform (closed) :',:,:\_f\,;.::\.
A-wfls directly into LNF-wfls by employing the new functors defined by Curry and '.\‘ P
Turner. -
Definition 2.42: Let X be a \-wff. The LNF transform of X is \-TO-LNF[X] where: ::t
A\-TO-LNF[X] "
(if ATOM-P[X] 5
then ATOMIC-GRAPH[X] e

(elsesf X = (X v B)
then C-T-ABS[v,\-TO-LNF(B]]
else ;; X is a combination

(let OPR be \-TO-LNF[OPERATOR[X]] & R
OPD be \-TO-LNF[OPERAND[X]] in ° ®
;; OPR and OPD share no vertices so they are compatible 5:.'(?-:‘;',::2:'-'
COMBINE([OPR,OPD})) '.'_’:::.:t.;_::,..;
‘.'.'.':':v“»f'f
In the following definition of the Schénfinkel-Curry-Turner-Scheevel abstraction algo- E:;:":S‘:;
rithm (C-T-ABS), the shorthand notation: '." ’ '-"':"
E of the form: BX Y R

S
i

replaces the rather cumbersome phrase “E is a combination having initial atom B and ,
two arguments — let the first of which be called X and the second Y.

------
«®a
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Definition 2.43: For any variable v and LNF-wfl B, there is an LNF-wff C-T-ABS[v,B]
where
C-T-ABS[v,B] &/
(if (and ATOM-P[B] INITIAL-ATOM(B] = v)
then ATOMIC-GRAPHI[]]
elseif v does not occur in B
then K-COMBI[B]
else ;; B is a combination
(let OPR be OPERATOR[B] &
OPD be OPERAND(B] in NAPALNE
(if (and ATOM-P[OPD] INITIAL-ATOM[OPD] = v) A
then (if v does not occur in OPR ROt
then OPR
else W-COMB|C-T-ABS{v,OPR]])
elseif v occurs in both OPR and OPD
then (let ABS-OPR be C-T-ABS[v,OPR] in
(if ABS-OPR of the form: BX'Y
then S'-COMB[X,Y,C-T-ABS{v,OPD]]
else S-COMB[ABS-OPR,C-T-ABS[v,OPD])))
elsetf v occurs in OPD ;; but nct in OPR

o,
.....

4

then (let ABS-OPD be C-T-ABS[v,OPD] in ;.:-_.:i_._:_,::,:
(if ABS-OPD of the form: BXY RS
then B'-COMB[OPR, X, Y] NN
else B-COMB[OPR,ABS-OPD])) AN
else ;; v occurs in OPR but not in OPD I AR
(let ABS-OPR be C-T-ABS[v,OPR] in L.
(if ABS-OPR of the form: BXY NN
then C'-COMB(X,Y,OPD] AL
else C-COMB[ABS-OPR,OPD]))) RNt
::"C;':’,':'."

Some auxiliary definitions of functions used above:

- ’;g.
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Definition 2.44: Let X, Y, and Z be LNF-wfls.
K-COMBX] =
COMBINE[ATOMIC-GRAPH[K),X]
W-COMB[X] =
COMBINE[ATOMIC-GRAPH[W] X]
S -COMB[X,Y,Z] = ) [ ]
COMBINE[COMBINE [COMBINE[ATOMIC-GRAPH[S'],X],Y},Z] ANGRALRY
RO O
S-COMBIX,Y] ¢ .;_;:'5:;::::::3'
COMBINE[COMBINE[ATOMIC-GRAPH([S],X],Y) AN

F'-COMB[X,Y,Z] 2
COMBINE[COMBINE[COMBINE[ATOMIC-GRAPH[B'] X],Y],Z]

B-COMB[X,Y] ¢
COMBINE[COMBINE{ATOMIC-GRAPH[B].X], Y]

C'-COMB[X,Y,Z] ¢
COMBINE[COMBINE [COMBINE[ATOMIC-GRAPH(C' ], X],Y],Z]

C-COMB[X,Y] 2f

COMBINE[COMBINE([ATOMIC-GRAPH[C] X], Y] B
It is claimed that the wff C-T-ABS[v,B] is equivalent to the wff ABSTRACT[v B]
They are equivalent in the sense that both (GRAPH-TO-STRING[C-T-ABS[v,B]] Z) Y
and (ABSTRACT([v,B] Z), for all SKI-wffs Z, reduce to the same SKI-wff W given the °
extended definition of reduction below. An informal justification of the claim follows < N
this definition. A
S
- oA
First, recall the reduction rules for S, K, and I: ;:-':EIE\
P AN S
SXYZ—-XZ(YZ ®
KXY-X NI R
X -X N
Add to these the reduction rules for W, B, C, S', B', and C': ‘;3-;:-::-::;.
WXY—-XYY ‘:'-’:"?-;—i“
BXYZ—’X(YZ) [ LSRN,
CXYZ-XZY R
SWXYZ—-W(X2Z)(YZ :.,::u:\’
BWXYZ-—W(X(Y 2) NN
CWXYZ-W(X2)Y NI
@
Turner, in [Turner 1984], gives credit to Mark Scheevel (Burroughs Corporation) for ’:,"'.,
coming up with the B’ functor described herein. Turner’s B’, defined in [Turner 1979c], }':::_'f:‘ ,
was defined by this reduction rule: B WXY Z - W X (Y Z). EORSAAY,
’\'\/\ ’-‘.
Y08 %
» —‘—".<¥"
e T A LS L R R S Ch CLTh (R YR L T LA A T T T s P VOV 2R N A TP AL R R ’.r:'a\.ﬁ:a\-l‘
F o A G G S TR O (AN S ~fa R S ARANAS AN A A A L R SRS O AN N
:!: '\t ::}_l\. :S: S\- ')‘:': ,,;g‘::,u‘:gt'.-.\:i '.: ::\S\-, ’:;;-i:;-;\ ” s,"'\_\‘,\.::\.$ -_’:1.' :,-‘::-. '_-; ‘ : _\:; :c' =~ \.)'\.“ -.(': . .\' v .*: v :::‘
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: This set of rules, together with the SKl-calculus’ contextual reduction rules, defines an
h) extended ‘‘immediately reducible to” relation — call it SKI'-imr. The reflexive transitive
h closure of SKI'-imr is the new reduction relation.

. To demonstrate the claimed equivalence, the definition of C-T-ABS is viewed as a collec-
; tion of rules of the form: <condition> =< wff>>. The corditions are enumerated
s below. Following each condition is the wff (GRAPH-TO-STRING([C-T-ABS[v,B]] Z), a

0 reduction of it, the wff (ABSTRACT (v ,B] Z), and a reduction of it. Both reduction
': sequences end in equivalent wfs.

‘ . B=v=
" C-T-ABS:12Z
y ABSTRACT:1Z V
. 2. v doesn’t occur in B =
" C-T-ABS: KB Z
& ABSTRACT: KB Z V
, 3. Bis a combination, v = B’s operand, and v doesn’t occur in B’s operator =
V) C-T-ABS : OPERATOR[B| Z
: ABSTRACT: S (K OPERATOR[B]) I Z
. — K OPERATOR(B] Z (I Z)

; — OPERATOR[B] (I Z)
— OPERATOR[B] Z V

4. B is a combination, v = B’s operand, and v occurs in B’s operator =
C-T-ABS : W C-T-ABS{v,OPERATOR[B]] Z
, — C-T-ABS[v,OPERATOR(B]] Z Z
N ABSTRACT: S ABSTRACT[v,OPERATOR([B]] I Z
— ABSTRACT|[v,OPERATOR[B]] Z (I 2)
— ABSTRACT(v,OPERATOR([B]|Z Z v

s B

5. B is a combination, v occurs in B’s operator and operand, v # B’s operand, and C-
T-ABS[v,OPERATOR[B]] = (BX Y) =
C-T-ABS : 8’ XY C-T-ABS[v,OPERAND(B]] Z where
Y = C-T-ABS[v,OPERAND{OPERATOR(B]]]
— X (Y Z) (C-T-ABS{v,OPERAND(B]] Z)
ABSTRACT: S (S (K X) Y') ABSTRACT[v,OPERANDB]] Z where
Y = ABSTRACT[v,OPERAND[OPERATOR[B]]]
— S(KX)Y Z (ABSTRACT|[v,OPERANDB]] Z)
—~ KX Z (Y Z) (ABSTRACT[v,OPERAND[B]] Z)
— X (Y' Z) (ABSTRACT[v,OPERAND[B]] Z) v

6. B is a combination, v occurs in B’s operator and operand, v 3¢ B’s operand, and C-
T-ABS[v,OPERATORB|] # (BX Y) =
C-T-ABS : S C-T-ABS[v,OPERATOR(B]] C-T-ABS[v,OPERAND[B]] Z
ABSTRACT: S ABSTRACT[v.OPERATOR[B]] ABSTRACT[v,OPERAND([B]] Z

B PSR A I IR P P LIPS PP AT S e . com - . - - - .
f\- ._l \’f\- .‘-“. \J‘\-f\". ’.\"‘-,' NN ‘l e RO \'_\'\"'\."\(\’Nr\"\f\"ﬁc: f\%f\f\‘f~f\f~f\f~ T \-I"\I- o
St ol ol L P AL PP NG SO N A NN .r,\_.r\C AN f,.%f\a\:\.f_‘a\ SAGN
:"-".' o o na L A e N AR AT "'\r;" ALY "'\5& N SO, NGRS
MM AN AN A AL N A AN A A AR P NI A A NN PO o, o v o

Sheret e

5

s
P
. _1
."

A,
XX
X
’

EEEA
'y
’

Y
&

2
7"

T W
&Iffnﬂ o
x P

%

Pl

P4
e
ks

2%

'»{:I:I;I‘ e
P
= )
o ol mf M

AL
®

‘."
CANA S
5

ARy

VAL AR
® s’
A Y

¢
1Y
S”
1 4

4 1, 'y
'\"'l
et

.
PR

LR
’\",‘7.'1'1
l.' “f“.‘ e
s &
’ .

SN
R
1)

]
o
LY
K

" ~“®S "-"\)'\ >,

v AN,
Ve

.
LY

»

P

- Y s &
PP
\.“' ¥

h

.

G Gt
. R
L

s
<

"."l ‘9
L ]

L ]
['4" . . KAA
o s 00,
v @ o N ‘s
ol R

. -'. < l"'J‘ .
A '.f.n
* "
e
N
oL

XA
7

N
J’ X
SHLALS

o
. 85
P

%
0

v [
[}
.

Ty 3
» l’%~'.“
“aﬂh'a_/}
LYY
P A
"
L84

“f
’
%%

« ‘I'l,‘ T ',
A%

P
P AL
Y%,

Feas

o
¢
&

v S
L)
A

', .
RARRY
a
'.'_" ’ s



AHESTGET R RN LR GRS e Suh Th & L A RSV A LA AN ING LA NS0 G a4 4 a0 000 25 2 g89 o0y o SO0 afe ') oM 004 ot pter 4 :V':V'.V.'VLWWF.’:

Page 55

7. B is a combination, v occurs in B’s operand but not in B’s operator, and C-T-
ABS[v,OPERANDB]] = (BXY) =
C-T-ABS : B OPERATOR([B] X Y Z where
Y = C-T-ABS[v,OPERAND[OPERANDB]]]
— OPERATOR[B] (X (Y 2))
ABSTRACT: S (K OPERATOR([B]) (S (K X) Y') Z where
Y' = ABSTRACT[v,OPERAND{OPERAND B]]]
— K OPERATOR[B] Z (S (KX)Y' Z)
— OPERATOR[B] (S(KX) Y Z)
— OPERATOR(B] (KX Z (Y' Z))
— OPERATORB])| X (Y' Z)) Vv

8. B is a combination, v occurs in B’s operand but not in B’s operator, and C-T-
ABS{v,OPERANDB]] # (BXY) =
C-T-ABS : B OPERATOR[B] C-T-ABS[v,OPERAND(B]] Z
— OPERATOR(B] (C-T-ABS[v,OPERAND(B]] Z)
ABSTRACT: S (K OPERATORB]) ABSTRACT[v,OPERAND(B]] Z
— K OPERATOR(B] Z (ABSTRACT (v, OPERAND(B]] Z)
— OPERATOR[B] (ABSTRACT[v,OPERAND[B]] Z) v

9. B is a combination, v occurs in B’s operator but not in B’s operand, and C-T-
ABS[v,OPERATORB]] =(BXY) =
C-T-ABS : C' XY OPERAND(B] Z where
Y = C-T-ABS[v,OPERAND{OPERATORB]]]
— X (Y Z) OPERAND(B]
ABSTRACT: S (S (K X} Y') (K OPERAND(B]) Z where
Y' = ABSTRACT[v,OPERAND[OPERATOR[B]]]
—-S(KX)Y Z (K OPERAND(B] Z)
—~ KX Z (Y Z) (K OPERAND(B] Z)
— X (Y’ Z) (K OPERAND(B] Z)
— X (Y’ Z) OPERAND[B] v

10. B is a combination, v occurs in B’s operator but not in B’s operand, and C-T-
ABS(v,OPERATORB]| # (BX Y) =
C-T-ABS : C C-T-ABS[v,OPERATOR[B]] OPERAND(B] Z
— C-T-ABS[v,OPERATOR(B]] Z OPERAND[B]
ABSTRACT: S ABSTRACT[v,OPERATOR[B]] (K OPERAND|[B))
— ABSTRACT[v,OPERATOR[B]] Z (K OPERAND[B] Z)
— ABSTRACT|[v,OPERATOR(B]] Z OPERAND[B)] Vv

Note that the third clause in C-T-ABS’s definition is very important. This clause actu-
ally shrinks the size of the output wff. This transformation step is valid since, in the \-
calculus, the »-wff (A v (X v)) Y) Mimr (X Y) for all \-wfls X and Y given that v does
, not occur free in X.

-5- -

N Some examples of A\-wfls and their LNF-wfl equivalents (via \-TO-LNF and C-T-ABS)
g are displayed below. For comparison, the \-wfls are also transformed to LNF-wffs via
X-TO-SKI, ABSTRACT, and STRING-TO-GRAPH.
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Figure 2.14
Figure 2.15

The ABSTRACTed and C-T-ABSed Versions of the h-wfl: A x (+ x x)
The ABSTRACTed and C-T-ABSed Versions of the A-wff: X f (A x (f (f (f x))))
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via. ABSTRACT via C-T-A8S .-f:,\;\f“f‘)'.
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The ABSTRACTed and C-T-ABSed Versions of the \-wff: X f (A g (>\ x (+ (f x) (g x))))
Figure 2.19
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The graphical representations of the reduction rules for each of these new functors will
now be displayed. The author believes that these pictures, although informal, may
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provide the reader with a better understanding of the workings of the rules than do the

formal definitions. From the picture of the reduction rule for the functor f, one can infer

the definitions of the predicate LNF-f-REDEX-P and the function LNF-f-REDUCTUM.

As the author makes no use of the functors’ formzl definitions, these definitions will not

be given.

RooT:

REDUCTLM

REDEX

The Rule WX Y —-XYY

Figure 2.20
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The numeric functors are: NUMBERP, +, -, X, DIV, IDIV, REM, EXP, <, >, ADD1,
SUBI1, and ZEROP. The formal reduction rules will be given only for X, as the other
functors’ rules are almost identical. For these other functors, only the linearized reduc-
tion rules will be presented.

Definition 2.45: Let X be an LNF-wff. X is an LNF-X redez if LNF-X-REDEX-P[X]
where:
LNF-x-REDEX-P[X] =
(and (not FORWARDED-P[ROOT [X],X])
INITIAL-ATOM[X] = X
NUMBER-OF-ARGS[X] = 2
ARG(1,X] is an atom having a number as initial atom
ARG[2,X] is an atom having a number as initial atom)

Definition 2.48: Let X be an LNF-X redex. Y is the LNF-X reductum of X-if LNF-
X-REDUCTUMIX] = Y (X LNF-X-imr Y) where:
LNF-x-REDUCTUMK] =
(let n, be INITIAL-ATOM[ARG[1,X]] &
n, be INITIAL-ATOM[ARG[2,X]] in
FORWARD-COMB[X,ATOMIC-GRAPH|[n, X n,]])

The linear representation of X'’s substantive reduction rule is: X n m — gXxm?S This
rule implies that the functor X has an arity of 2.

In addition to having a substantive reduction rule, X is also associated with the follow-
ing two contextual reduction rules:

XRDUX - x IMRX
X n RDU — X n IMR

The first contextual rule expresses the relation: “in an LNF-wff having initial atom X
and two arguments, the first of which is a reducible unknown, the unknown may be
replaced with the wif to which it immediately reduces”. The second rule states: “in an
LNF-wfl having initial atom X and two arguments, the first of which is a number and
the second of which is a reducible unknown, the unknown may be replaced with the wff
to which it immediately reduces”.

Thus, both of these rules specify a context in which other reductions may take place.
These contexts are called functor specific reduction contezts or, simply, r-contezts. Most
of the new functors are associated with one or more contextual reduction rules specifying
one or more r-contexts. The predicate, R-CONTEXT-P, takes three arguments: an
LNF-wfl X, a functor f, and a positive integer i. R-CONTEXT-P[X/f,i] is true iff ‘X is
an f reduction context for argument i’

Some examples of X reduction contexts follow.

? When linearly displaying rules, expressions which are assumed to be evaluated by an agent
outside the caiculus appesr undarlined.
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A functor f, whose arguments must be reduced to lazy-normal form before its reduction
rule may be applied, is a strict (sometimes called totally strict) functor. Some functors
require that only some of their arguments be reduced before being applied. These func-
tors are often referred to as partially strict or strict in a specific argument(s). The func-
tors X and NUMBERP are examples of strict functors. The functor IF, defined later, is
strict in its first argument only.

The linearized reduction rules (both substantive and contextual) for all of the numeric
functors are displayed below:!0

NUMBERP NUMBERP n — TRUE
NUMBERP CFN — FALSE. if CEN not a number
NUMBERP RDU — NUMBERP IMR

+ +nm-—pg+m
+RDUY - +IMRY
+n RDU — + n IMR

X Xnm-—nxm
XRDUY - xIMRY
X n RDU — X n IMR

- -om-—nm
-RDUY —~-IMR Y
-n RDU — - n IMR

DIV DIVonm-—g/m,if
DIVRDUY —=DIVIMR Y
DIV n RDU — DIV n IMR

IDIV  IDIVij — integral quotient after i/j , if j2£0Q
IDIVRDUY —-IDIVIMR Y
IDIViRDU — IDIViIMR

REM REM n m — remainder after n/m , if m=£0
REMRDUY —-REMIMR Y
REM n RDU — REM n IMR

EXP EXPij — theinteger ¥ ,if i>0
EXP ij — the float # , if j<0
EXP s i — the float g'
EXP n s — the float n®
EXPRDUY - EXPIMR Y
EXP n RDU — EXP n IMR

10 Some rules take the form LHS — RHS if CONDITION where the CONDITION 13 an ex-
pression to be evaluated by an outside agent Rules of this form should be read as saying if CON.
DITION, then LHS may be replaced by RHS"
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AR
= e N
< < nm— TRUE, if n<m r_.;:::::?&
< nm — FALSE, if n>m b o]
<RDUY - <IMRY AOSUAIAIAY
< nRDU — < RDUIMR :_..
. 3
> >nm— TRUE, if n>m 7 "q,f\f ":
>nm— FALSE, f n<m W "Q"’
>RDUY—->IMRY ._a"~
> n RDU —- > nIMR e o
PRARRRY
‘ ADD1 ADDl1n — pn+l ’?"’:'*.z:'}
ADD1 RDU — ADD1 IMR TR
. :_.-:‘:J-::).'.r:‘_
SUB1 SUBln — p-1 DAV AV
SUB1 RDU — SUB1 IMR '_\‘ ol .
o y
~
ZEROP  ZEROP n — n=0 2:‘\‘-?-""’* R
ZEROP RDU — ZEROP IMR : WY c:.:»
o 2
h’.l\- M¥a
Note that, in all cases, only one rule, be it substantive or contextual, would be applicable L S
to any LNF-wff. Note also that, for each functor f, all of f’s reduction rules require the
same number of arguments. There are no LNF functors having multiple arities. e

S g

2.2.4. Boolean Functors

7__.‘ v _'_.'N\i;.
The boolean constructors are TRUE and FALSE. The boolean functors are: :'::E::::\'{;:,.
BOOLEANP, NOT, OR, and AND. Their linearized reduction rules are displayed :,'\'_‘;n.::\:\:& )
b € lOW : J‘:-":;:.f:y":
EANATAE TN
BOOLEANP BOOLEANP b — TRUE PGS
BOOLEANP CFN — FALSE, if CFN not a boolean T A
BOOLEANP RDU — BOOLEANP IMR ARG,
SR
NN
NOT NOT TRUE — FALSE r_:.::.-.‘.-_;.-_:{
NOT FALSE — TRUE AN
NOT RDU — NOT IMR e o
::‘._ :.f.a:'.i
OR OR TRUEY — TRUE ‘;f\:\
OR FALSEb — b ::-:'_'.:::l:':,:j:_\
OR FALSE RDU — OR FALSE IMR L
ORRDUY - ORIMR Y ‘..
SRR AGR
AND AND FALSEY — FALSE o _,"\-_:
AND TRUE b — b :'_._:'_._.f_;;._::._
AND TRUE RDU — AND TRUE IMR ..:,_.:‘_'_.::.:_'.-:
ANDRDUY — ANDIMR Y SRTAN A
i ' < - - Seria
The formal definition of OR'’s substantive reduction rules will now be presented. OGN NN
TN
R
N
8 7
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Definition 2.47: Let X be an LNF-wff. X is an LNF-OR redez if LNF-OR-REDEX-
P[X] where:
LNF-OR-REDEX-P[X] &
(and (not FORWARDED-PROOT [X] X])
INITIAL-ATOM[X] = OR
NUMBER-OF-ARGS[X] = 2
ATOM-P[ARG(1,X]]
(or TRUE = INITIAL-ATOM[ARG[1 X]]
(and FALSE = INITIAL-ATOM[ARG{1,X]]
ARG[2,X] is an atom having a truthvalue
as initial atom)))
Definition 2.48: Let X be an LNF-OR redex. Y is the LNF-OR reductum of X il
LNF-OR-REDUCTUMX] = Y (X LNF-OR-imr Y where:
LNF-OR-REDUCTUM[X] ¢
(3f INITIAL-ATOM[ARG[1 X]! = TRUE
then FORWARD-COMBX,ARG[1 X]]
eise ;; INITIAL-ATOM[ARG(1.X]] = FALSE and
;; INITIAL-ATOM[ARG({2X]] a truthvalue
FORWARD-COMB[X,ARG{2,X]])

The functor OR is also associated with two contextual reduction rules. Some examples
of OR reduction contexts follow.

PN AN
SN A A
: N ox AN |

NoT TRUE
Two OR Reduction Contexts for Argument 1
Figure 2.29
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Two OR Reduction Contexts for Argument 2 ::::.’:E::::

Figure 2.30 : ..:-'_'::i.\-:::

‘;’.‘-“‘- .‘-‘.\
The realizations of the functors OR and AND (presented in the next chapter) perform » .
like ML’s OrElse and AndThen boolean operators. LISP implementations also provide AT -}.‘-
boolean connectives whose arguments are evaluated as required. o ,Q‘,
preatatnd
M\f.‘,::::

2.2.5. Pair and List Oriented Functors NN

M N

LNy

Lists are data structures familiar to all functional programmers. Since lists are so com- %}: N
monly used, some functors have been defined which manipulate them. There are two INANRSGYY

constructors which are used to make lists: [ ] and PAIR. The constructor [ ] is used to §; o

make empty (or null) lists and PAIR is used to build pairs. A (linearized) list is either: by i 8
the null list [ ], or !.\:.':{."-f,"
the pair (PAIR X L), where L is also a list. ':::}C"'_:j::
RS N

The I F-wff X is called the head of the list (PAIR X L). L 1s called its tail. The PAIR ':-‘;."-:}\'.-:;ﬁ
copstructor may, of course, also be used to pair other types of LNF-wffs. :‘_:-:_(,}i-::::}r
The pair and list oriented functors are: HD, TL, NULLP, PAIRP, NTH, APPEND, s.rv_y_;,; d
MAP, MEMBER, COLLECT, FILTER, REM-DUPS, REM-DUPS', FB, FB', FBT, -\'j',:.\}l..’}.-}f.k
FBT', INTERLEAVE, FLATMAP, ENUMERATE, UP, DOWN, and TURN. The util- ARV on
ity of some of the functors presented in this section is apparent. For many others, how- :.r':.r‘:: o

ever, the reasons for including them into the calculus are not so obvious. The uses to WA

which these functors are put, which justify their inclusion in the calculus, are presented
in the next chapter. Their linearized reduction rules are displayed below:

HD HD (PARXY)—X
HD RDU — HD IMR

5

RN
1 J

"- At

L
.

4Gyt S A
S NAK

TL TL(PARXY)—Y
TL RDU — TL IMR

NULLP NULLP [] — TRUE

NULLP CFN — FALSE, if CFN=£[]
NULLP RDU — NULLP IMR

~ . - .\ ..
e,
PRSI I IR



INTERLEAVE

FLATMAP

ENUMERATE

PAIRP (PAIR X Y) — TRUE

PAIRP CFN — FALSE, if CEN not a pair
PAIRP RDU — PAIRP IMR

NTH1 (PAIRXY) — X

NTH i (PAIRXY) — NTHi1Y, if i>1
NTH RDUY — NTH IMR Y

NTH i RDU — NTH i IMR, if >0

APPEND (][] — []
APPEND (|P — P
APPEND (PAIR X Y) Z — PAIR X (APPEND Y 2)
APPEND RDU Y — APPEND IMR Y

INTERLEAVE [P — P
INTERLEAVEP [] — P
INTERLEAVE (PAIRX Y) P —
PAIR X (INTERLEAVE P Y)
INTERLEAVE RDU Y — INTERLEAVE IMR Y
INTERLEAVE P RDU — INTERLEAVE P IMR

FLATMAP X [] — []

FLATMAP X (PAIR Y Z) —
INTERLEAVE (X Y) (FLATMAP X Z)

FLATMAP X RDU — FLATMAP X IMR

ENUMERATE X — TURN [] X
TURNX [] = UP X [][]

TURN X (PAIRY Z) — UP (PAIRY X) [] Z
TURN X RDU — TURN X IMR

UP[]XY—-DOWNX[]Y

UP(PAIR [|X)YZ—-UPXYZ
UP (PAIR (PAIR X, X,) Y)W Z —
PAIR X, (UP Y (PAIR X, W) Z)
UP (PAIRRDUX)Y Z — UP (PAIRIMR X) Y Z
UPRDUY Z - UPIMRY Z

Sy N
) ” v.- ‘f W " T
$'. YOUAD AN ':.j .

o,

-
o

l'l ]

«
als

\{‘: S
<
-

IS
Pl

-
3
r ]
bk
A, ;-

£l
-

"
.y
4

'

¢

PP
. l,',"v_'r'b"n

l",

L}

"%
@

TN AN

4
PR

L)
\

.

1'1

R Y

B ARSI

4y
./

Ty sd
5

S

[

P

BN
s
<

P
«

"’ff{f
o.’-.‘{g'
Ifzfi :E (]

*

b ]
P

Z

Y

by

P
".&
7
Y
A S S

.-
P

c.-'l.

-"’u"f’
L
TS
e
Ly

’

" RSN T T T L N L I
A e A o e e e N S
. w )t LI S . .
"~ L) f\(..:'. Vot e ','.'.4.'
o, N E N v ‘." L]



DOWN

MEMBER

COLLECT

FILTER

REM-DUPS

REM-DUPS’

FB

FB’

DOWN
DOWN
DOWN [] X (PAIR (PAIR Y, Y,)
PAIR Y, (TURN (PAIR Y, X) Z)
DOWN [] Y RDU — DOWN [] Y IMR
DOWN [] Y (PAIR RDU W) —
DOWN [] Y (PAIR IMR W)
DOWN (PAIR [|X) Y Z — DOWNXY Z
DOWN (PAIR (PAIR X, X,) Y)Z W —
PAIR X, (DOWN Y (PAIR X, Z) W)
DOWN (PAIR RDUX)Y Z —
DOWN (PAIR IMR X) Y Z
DOWN RDU Y Z — DOWN IMR Y Z

»
9
>
~
a
!
-
()
-~
N Z
S

) —

MAP X [] — []
MAP X (PAIR Y Z) — PAIR (X Y) (MAP X Z)
MAP X RDU — MAP X IMR

MEMBER [] X — FALSE
MEMBER (PAIR X Y) Z —

IF (= X Z) TRUE (MEMBER Y Z)
MEMBER RDU Y — MEMBER IMR Y

COLLECT []XY —Y
COLLECT (PARX Y)W Z —
W X (COLLECT Y W Z)
COLLECT RDU Y Z — COLLECT IMR Y Z

FILTER X [] — []
FILTER X (PAIR Y Z) —

IF (X Y) (PAIR Y (FILTER X Z)) (FILTER X 2Z)
FILTER X RDU — FILTER X IMR

REM-DUPS X — REM-DUPS' X []

REM-DUPS' [| X — X

REM-DUPS' (PAIR X Y) Z — IF (MEMBER Z X)
(REM-DUPS' Y Z)  (PAIR X (REM-DUPS' Y Z))

REM-DUPS' RDU Y — REM-DUPS' IMR Y

FBnm — PAIR n (FB' n+m m), if m=£0Q
FBnm — PAIR n (PAIR n ), if m=0
FBRDUY - FBIMR Y

FBn RDU — FB n IMR

FB' n m — PAIR n (FB' p+m m)
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FBT

FBT’

Although no formal definitions will be given for these functors, pictures of MAP’s two

FBT n m o — PAIR n (FBT' n4+m m o),

if (m=>0 and n<o) or (m<0 and n>o0)

FBTnmo — [],

if (m>0 and n>o0) or (m<0 and n<o)

FBT n m o — PAIR n (PAIR n ..
FBTRDUYZ -~ FBTIMR Y Z
FBTn RDUZ -~ FBT nIMR 2
FBT n m RDU — FBT n m IMR

if <o
FBT' nmo — [],

if olor{m<0 a

substantive reduction rules will be displayed.

FBT' n m o — PAIR n (FBT' p+m m o),
>

), if m=0

R Wee [y Ay A0,
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MAP f MAP
REDE X REDUCTLM
The Rule: MAP X [] — []
Figure 2.31
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Note that the combination (MAP X)) in the redex is “‘reused” in the reductum. The fol- °
lowing figure contains two examples of MAP reduction contexts for argument 2 as -:.;_-:\;-::;{\
specified by MAP’s contextual reduction rule Note that there is no MAP reduction con- ,,: *-:,.:'_'.
text for argument 1. A
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.2.6. Miscellaneous Functors Al
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The remaining LNF functors are presented in this section. They are: Y, =, L, IF, UNK- it " &
NOWNP, CONSTRUCTIONP, FUNCTIONP, FUNCTOR, ARITY, CONSTRUCTOR, L,,.':-,.tf:-_f;.\ :
NUM-ARGS, ARG, ATOMP, COMBINATIONP, OPERATOR, OPERAND, A-S-E, A- SRt
S-E’, A-S, A-S', and APP-TO-ARGS. Presented below are their associated reduction

LN
rules. ’%ﬁ%%é:

9:%?:
MNEE' 1

It is not expected that the reader immediately appreciates the usefulness of the functors:

]
o,

. o o
e T e o N A Y i)

A-S-E, A-S-E', A-S, A-S', and APP-TO-ARGS. Their existence in the calculus is o
justified in Chapter 3. * e
NIy
Y YX—=-XXX.) NS RSONE
RN
T S oy S
= 1 2 — BT
AND (= (OPERATOR CFN,) (OPERATOR CFN,)) e ,,JQ_,‘_
“e e N
(= (OPERAND CFN,) (OPERAND CFN,)) AN
=RDUY—-=IMRY :::::::_};
= CFN RDU — CFN IMR \\"_.»:.Q.,\:}:‘\\.-
Aoy
N NTRST .
Note that ='s reduction rules permit comparison of functions as well as constructions. 2 “V"'.‘i‘
Two functions (constructions) are equal, the rules specify, if and only if they have the :C-‘::\.:f:,pc:
same normal form. Thus, the functor = (when applied to functions) is testing for \j’.‘\j{:\: 4o
definitional equality and not eztensional equality — i.e. it’s testing to see if two functions :',-::-\'\‘JQ: X
are the same algorithm. :.-\",_.'-\?: .
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L ef CFN — TRUE, if NUM-ARGS[CFN]>0
L CFN cf — FALSE, if NUM-ARGS[CFN]>0
SS a

L Cfl Cfg b

ical
L CFN, CFN, —

L

ral)
2

(OPERATOR

(OPERATOR CFN,)

(AND (
(L (OPERAND CFN,) (OPERAND CFN,)),

OR (L (OPERATOR CFN,) (OPERATOR CFN,))
CFN,))
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CONSTRUCTIONP FN — FALSE

UNKNOWNP RDU — UNKNOWNP IMR
FUNCTIONP RDU — FUNCTIONP IMR

FUNCTOR FUNCTOR FN — INITIAL-ATOM[FN]

LRDUY—-LIMRY
L CFN RDU — L CFN IMR
IF IFTRUEXY =X

IFFALSEXY —Y

FRDUXY—-IFIMRXY
UNKNOWNP UNKNOWNP CFN — FALSE

UNKNOWNP IRU — TRUE

FUNCTIONP CN — FALSE

FUNCTOR RDU — FUNCTOR IMR

FUNCTIONP FUNCTIONP FN — TRUE
CONSTRUCTIONP CONSTRUCTIONP CN — TRUE
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CONSTRUCTOR RDU — CONSTRUCTOR IMR

CONSTRUCTOR CONSTRUCTOR (¢ X - -

ARITY RDU — ARITY IMR

ARITY ARITYFN —

NUM-ARGS CFN — NUM-ARGS[CFN]

NUM-ARGS RDU — NUM-ARGS IMR
ARG ARG i CFN — ARG[i,CFN]
- N

NUM-ARGS

<i<
ARGRDUY - ARGIMR Y

ARG i RDU — ARG i IMR

, if
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ATOMP ~ ATOMP CFN — NUM:ARGSICFN]=0 Y
ATOMP RDU — ATOMP IMR . plr:t:'; YA :
COMBINATIONP COMBINATIONP CFN — NUM-ARGS[CFN]>0 ...
COMBINATIONP RDU — COMBINATIONP IMR :":;'\-E‘J‘y N
)
e o]
OPERATOR OPERATOR CFN — QOPERATOR[CFN] E’*:}?: :
OPERATOR RDU — OPERATOR IMR R
o o
OPERAND OPERAND CFN — A ]
OPERAND RDU — OPERAND IMR ‘.F:'-"T-;::q‘:i )
f-\:-\'. =G
ASE ASEciXY(c Z,- -Z;,)—X :;:;:‘f\:‘::‘i
AS-Ec;iXY (e, Z; - -Z;)—Y, pASA Y6
. < s ®
if Q‘M ;.l.-.'v'v.-fl
A-S-EciXYFN—-Y e aa
ASSEciXYRDU - AS-EciXYIMR l ,‘.:::‘::*‘S::::.:»
RN
ASE ASE ciXY(cZy  Z;,)—X : “'..- '
ASE ¢iXY (2, - Z;) =Y, o e
if guz£eq or i ey
A-S-E'¢ciXYFN—-Y Q}::ﬁ’:f
pR YA ‘.)'-_', i
AS ASciX(cZy - Z,)—XZ, - Z, :’:%E::::
A-SciXRDU — A-SciXIMR e ubaN et
"““"‘r‘;"":
A-S' AS ciX(cZ,  Z,)-XZ, - Z Vo
s I DA s
s:\':ﬂ.'_-.':\.‘_ X
NOLCSON \-
APP-TO-ARGS APP-TO-ARGS iXY — X (ARG 1Y) .. (ARG iY) G0
;'.r:'_.‘:a: ::::: ,
Ll
Most of the miscellaneous functors have formal aefinitions similar to those whose s o
definitions have already been presented. The functor Y, the ‘“fixed-point finding func- ﬁﬁiﬁ\.ﬁf\
tor”’, however, has a definition that is a little different and therefore will be displayed. "’_\.3 ) *"‘q\
Y is called the fixed-point finding functor since its characteristic property is that: e:\i':-r, .
for all functions F, Y F is a fixed-point of F', 1.e. XA _""{u.
YF=F(YF).l! LA A
b :‘:‘:":":‘:’n‘.
By repeatedly substituting the wff F (Y F) for occurrences of the wff Y F on the right ~j.\-:'.-i:;.\-.'
. ) . NANLRE AN,
hand side of the equal sign, one gets the equation: o -_:\.\‘E‘n.-_
T,
which looks like the linearized rule for Y. This linearized rule is one which is deceptive. oz ,_7.,_.‘_7
A cycle exists in the reductum which cannot be displayed in this linear format. The for- e
mal definition and a graphical picture of Y’s reduction rule follow. ,:-‘,::-:.‘;'.:_.:-
OO
RSO
. . : . . . ® o
] 11 The functor Y plays an important part in the impiementation. This role will be discussed in
Chapter 3. o
Y-
Ny 3 Y N N A N L A A LN LA S S, S A LA S e T R AL N P e -.,\,-.;.'-”53‘.;: ""::-ﬁ:
A o ' N v O e T e NN S g e e R "
R e AT RN R R
AN s A e e S S A A A AN AN At e, . DNV, 0k gy,
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Definition 2.49: Let X be an LNF-wff. X is an LNF-Y redez if LNF-Y-REDEX-P[X]
where:
LNF-Y-REDEX-P[X] =
(and (not FORWARDED-P[ROOT [X] X])
INITIAL-ATOMX] = Y
NUMBER-OF-ARGS[X] = 1)

Definition 2.50: Let X be an LNF-Y redex. Y is the LNF-Y reductum of X if LNF-Y-

REDUCTUMX] = Y (X LNF-Y-imr Y) where: R
LNF-Y-REDUCTUM[X] 2% ARG
(let root be ROOT[X] in AAGRTK
<VS[X], A
RATOR[X]|(VS[X]-{root}) U { <root,RAND [root]>}, L
RAND {X]|(VS{X]-{root}) U {<root,root>}, R
FWD[X], RGN
ATOM[X], .Q%:E N

root >) N 2
Y ettty

@«

REDEX REDULCTLM

An Example of LNF Y Reduction
Figure 2.34

The LNF-calculus’ functors have been presented. In Appendix A, all of the LNF-

calculus’ linearized reduction rules are redisplayed. They are displayed in two groups —
first the substantive reduction rules, then the contextual reduction rules.

2.2.7. Reduction

Informally, an LNF-wff X is reducible (there is another LNF-wff to which it immediately

reduces) if either X is a redex or X is a reducible reduction context (i.e. X is a context \J\__'?\
which permits reduction of one of its subformulas (Y), and Y is reducible). :-’_":
e
All redex-reductum pairs are specified by the calculus’ substantive reduction rules. The ALt
. . . . N
functor specific reduction contexts are specified by the calculus’ contextual reduction RN
rules. In addition to these r-contexts, two other reduction contexts (which are not func- —
™ tor specific) exist. An LNF-wff X which is forwarded to the LNF-wff Y is a reduction e
context for Y. A combination X having operator Y is also a reduction context for Y. AT
K Th ducti i i RN
o ese two reduction contexts are graphically displayed below. LAY
ATATAN
RS AAAVY
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Two Reduction Contexts for the LNF-wff Labeled Y At
Figure2.35 A =
Definition 2.51: Let X be an LNF-wff and let v be in VS[X]. The LNF-wff described e ':“
in X rooted at v is (LNF-WFF[X,v]) where ;:33-;.-';_5‘_
b LNF-WFF[X,v] = A
; < VS[X],RATOR[X],RAND [X],FWD [X], ATOM[X],v > i
-'_‘J\-'\f“-'
' Eakdakas
E The formal definition of the LNF-calculus’ “immediately reducible to’ relation follows. °
; Definition 2.52: Let X and Y be LNF-wffs. X itmmediately reduces to Y if X LNF-imr :". .
; Y where -3
3 X LNF-imr Y 2 .;::
i (let xroot be ROOT[X] in ~
(if FORWARDED-P{xroot,X] NN RN
: then (let yroot be ROOT[Y] in S
{ (and FORWARDED-P [yroot, Y] o :
Xroot = yroot DENENER
(SUBFORMULA [X,FORWARDED-TOxroot,X]] T
‘ LNF-imr "_.\.,-.J,-._,\.?\J
SUBFORMULA[Y ,FORWARDED-TO[yroot,Y]}))) NN,
else ' :::::ﬁ:‘,;:ﬁ:-_"
' (or (there is an LNF functor f s.t. AN
| (and LNF-f-REDEX-P[X] SASNAN
J

Y = LNF-f-REDUCTUM[X]))
(there is an LNF functor f and an is.t.
(and 1 <i<NUM-ARGS[X]
R-CONTEXT-P{X f,i]
ARG[i,X] is reducible
Y = REDUCED-R-CONTEXTX.i]))
(there is an LNF-wff Z st
(and OPERATOR{X] LNF-imr Z
Y = LNF-WFF([Z xroot]ni

. Wt
. -,




Page 75 Z_'f..,:‘ ':':
PR
Definition 2.53: Let X be a reducible reduction context tor argument i — i.e. there is it '::::f
some functor f such that R-CONTEXT-P[X f,i] and ARG[iX] is reducible. Perform- AN
ing one LNF reduction on X yields the LNF-wff: REDUCED-R-CONTEXT[X,i], ) Y
where: Ay
REDUCED-R-CONTEXT[X,i] 2¢ RN,
(let RARG be the LNF-wff such that AR
ARG[i,X] LNF-imr RARG in LNF-WFF[RARG,ROOT[X]]) NN
]
Definition 2.54: LNF-red is the transitive closure of LNF-imr. AR

(NS

Definition 2.55: LNF-red* is the reflexive transitive closure of LNF-imr.
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An Example of an LNF Reduction Sequence
Figure 2.38

Ncte that an irreducible LNF.wfl may contain redexes Irreducible LNF-wfls are sa.3 -
be in lazy-normal form It may be noted that all constructions and ail functions are o
‘azy-normal form. Constructions are in lazy-normal form since all reduction rules =t
substantive and contextual) require a functor as initial atom. Functions are in .azyv-
normal form because, although they have a functor as inmitial atom. thev do not have
enough arguments to form either a redex or a reduction context Thus. all reducibie
LNF-wfls must be unknowns Not all unknowns are reducible, however Some irredy -
ble unknowns are displayed below
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1s a formalized version of D A Turner's
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Chapter 3

An Experimental Implementation of the LNF Language
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rier even simutane usy o See Haok oo 00T T prner MLy Tl rner paNinT an

“Tarner 1982] for mors arguments 0 fuooc 0 referenrinly ransparent anguages A
\anguage with reduclion semaniics s .ne wheL weepls expressions s .nput and pro-
duces firredycible; expressions as cutput  The detimition of arreducbility varies from
language to language In the LNF language an expression s irreducibie if and calv of

s 1n lazy-aormal form

) The LNF programming environment was developed to give the author “hands on'' ex-
perience with the issues involved in implementing such a language ‘What follows 1s a
description of the implementation
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The user interface to the systemn 13 a hsten-respond loop not unlke the user interfaces
present in most Lisp implementations The user provides the system with two kinds of
input =xpressions and directives

Presented with a well-formed LNF expression E iwhich i1s different from an LNF-wff), the
svstemn performs the following
splay  LNF-of-wll 'Compile E}}j

mine takes well-formed LNF expressions as input and produces LNF-wfls as output
CNF fowt accepts LNF-wfls as input and produces LNF-wfls 1n lazy-ncrmal form as

v Dhspav sometimes werang with LNF-of-wff outputs to the terminal the
e soeps UNEowtl g ineanizes format Eaen of these operations Compile, LNF-of-wff,
Vot Thsp oAy .8 1es it o letal on thus chapter

ca

cems e eve oty thie svster neadifs che svstem For example there are directives

Vo nangs pow the svstem fLpaav e ety o eapressions enable reduction monitoring
. CUrn waes cae o aser 0 gove names - UNE expressions. start end the recording ] ®
soesgprono1 G ete Directives are ot i1 mense Jevice while expressions are R S
RRSANAEAN
el o4 svatemn prompt ! NI
AR Y,
\"'_-._'C\.:\i'\
AT AL
3.2 (etalisp Representation of LNF-wffs NN
L
CNF ~ : . e lrrE
B afe are represented in a straightforward way using Zetalisp symbols. conses. and RN PN
YA
: ¢ RGN
Voo vomie LNF-aff ie a onstru.tor of a functor - 18 represented in the machine PO N
AR RTATA
v e Zetallsp symbol having the same name  On the property hist of the symbol °
sepresenting each functor Yerh the functor's anity and a routine which s an encoding of l‘_-::j-:;“ N
e inetor 3 reduction ruleis; are kept STty
NRASAC AN
-u"\'.::::b_:&
s : M ¥
v U NFowff combination X0 having sperator OPR and operand OPD. 15 represented in é‘,ﬁ"ﬁ.«-‘
“ue onachine by a CONS cell the CAR f which pomts at the representation of OPR WA
it the CDR Sl vhich points at the represeataticn of OPD L4 d

A CONS cell will be dispiaved as a rectangle divided n hall —— the loft half being the
AR and the rnight the CDR  Arrows are used to represent pointers As in diagrams
displaying LNF-wffs (see Chapter 2) labeied triangles will be used to abbreviate whole
LLNF-wff representations
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; ! LNF-of-wfl simulates the LNF-M machine described in Chapter 2
' 2 The user specifies (via directives) how much reduction is to be performed
3 A session with LNF has been recorded and placed in Appendix D
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Y K g
o
- An LNF-wff and Its ZetaLisp Representation
e Figure 3.1
\ The system function which builds the machine representation of a combination from the ' Bl
. representations of its operator and operand is called Combine. From time to time \ \
I ZetaLisp function definitions will be displayed. They always take the form: ‘\.}:l&s:.:;; A
. on e N
N (DEFUN Function-name (formal, - - - formal, ) body). b e
L
- The simple definition of Combine follows: A A
-, '.'\J-"-'“:
P (DEFUN Combine (wff; wil,) (CONS wil; wfl,)). :"-:,’::-[:E
. ) . . . . SRS
e When displaying ZetalLisp code, ZetaLisp primitives (such as DEFUN and CONS) appear '.F:::::'.‘
in uppercase, defined functions appear capitalized, and formal parameters appear in I
> lowercase. ey .‘!._
‘.:’ ':"-‘:'f:l\:;:-" X
o Recall from Chapter 2 the function COMBINE. Its domain was restricted to COMPA- R ,.}_":
- TIBLE LNF-wffs. Since LNF-wfls are being represented by ZetaLisp objects, incompati- ’;:f-.:-x
Ko ble representations cannot exist — and therefore the implemention’s ZetaLisp function r,‘f:.';‘y\'tf
T (Combine) need not perform a compatibility check. P
o .‘. \.--I. 7
~ . . . ) . ) ALy
N It remains to describe how forwarded vertices are represented. Forwarding vertices (like _:':"',:-
L combinations) are also represented by CONS cells — the CAR of which is a flag (the :\:{v;?_{{
ZetaLisp symbol LNF:IP4 ) telling the system that this is not a combination but a for- :*-r'.:r:):
warding vertex. The CDR of the CONS cell points to the representation of the LNF-wff i
) to which the vertex has been forwarded. An example follows: rep -,:.-.--
] 2 0 la
2 SO
e n_:r S .-."_:.
s ERONLLY
. e, -" 1
[/, .-t-r:-r:-r
N s !
'I‘- “\“"l !
:-“' '.\-\;"- )
4 4 In ZetaLisp there 1s more than one namespace ZetalLisp symbols hve in “packages' — and ;'»:\*\
> are wnitten P'S where P 1s the name of the package and S the name of the symbol Thus, the sym- Raradad e
L
bol LNF IP (IP for Invisible Pointer) lives in the LNF package — a private package inaccessible to ®
I > the user of the LNF system There 1s no danger that the symbol LNF IP could be confused with a _T.:.'F,’.p_ ”
n user constructor having the name [P as all user symbols are placed 1n the USER package The -:._-'-::-::_ ]
v prefix “USER " 1s assumed by ZetaLisp if no prefix is provided :.'vj\,,‘-‘,.
v, NS
N AL
g ‘p.”x" .
A Al

YA - ‘v$ “‘;‘:
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An LNF-wff and Its Representation e -‘
Figure 3.2 ARt

Recall from Chapter 2 that, in the LNF-calculus, only combinations are ever forwarded.®
Given the representation above, combination forwarding may be accomplished by simply
overwriting the representation’s CAR (with the symbol LNF:IP) and CDR (with the
pointer to the wiff to which the combination is being forwarded). A representation of a
K redex-reductum pair, illustrating combination forwarding, is displayed below.
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An Illustration of Combination Forwarding “'.;":'-"-‘:::Q"-
Figure 3.3 RO,
N
This method of combination forwarding is a modified version of the one presented in f\“ﬁ"‘";-“
] [Turner 1979¢). Turner, instead of marking the combination as having been forwarded, Teletelely
overwrote the combination’s operator with the identity functor [ and the operand with T
the wif to which the combination was being forwarded. LNF’s implementation differs Tl

/

from Turner’s here because it was felt that [ redexes and forwarding vertices should be

. . . h‘h\l
distinguishable. sy
L ‘? -
» N v‘; el
:"‘&;{h_‘-":u‘
3.3. Compiling LNF Expressions to LNF-wffs NN NN
QRS
:-,“'\':\:'_w.:\}
LNF-wffs (even in a linearized format) are not ‘“user friendly”. The LNF language, -}:’{: Mo
. . . At Na S ey
defined below, attempts to satisfy the human need for a higher level of expression. An ®
LNF program is an expression (LNF-exp). The system function Compile translates well- 5 >
? '\-ﬂ-" "-'\
formed LNF-exps into LNF-wfls. LIRS
et
6 Combinations are forwarded in the LNF-calculus by the function FORWARD-COMB " s"\
ﬁ"-‘:b’\ G
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Please note that only well-formed LNF-exps are translated No attempt has been made YA
. . AL
to implement input error handling — when presented with unrecognizable input the sys- N
tem simply stops. In the discussion to follow. therefore. 1t will be assumed that user
input is always well-formed. Although LNF-exps are strings of characters. for purposes :::: oy
of discussion, an LNF-exp will be assumed to be an entity which wears its syntactic :,; AN
category on its sleeve and whose immediate constituents can be easily selected That s 3.:-»"
to say. an LNF-exp's abstract syntax 1s what's important here not its concrete syntax ” :y:
YAV

The set of well-formed LNF expressions «LNF-exp) mav he partitioned nte fve subsets

They are: E:E:E;"

. ] NIl

e Simple expressions (SIMPLE-exp ::J':f_:f:-"

e Lambda expressions (LAMBDA-xp, :,‘:}}_‘:_’
e Expressions having auxihary declarations WITH-AUNX-DECL-exp ®

e List expressions (LIST-exp) ;“‘.::“l‘:'l’,u

o Conditional expressions (IF-exp _ CASE-exp) 0'-.::\::5":

Ao

The transformation process which produces LNF-wls from LNF-exps wil w4 be ’ oLy
detailed. The discussion of the process will be broken up by expression type Faich of e ':'
the following subsections takes one LNF expression :lass and shows how expresmons in KSR

that class are transformed. A "f Y

AR

3.3.1. Simple Expressions e
3.1, . L
L 4

Simple Expressions (SIMPLE-exps) are just linearized LNF-wffs with two exceptions W

. N , -’-5;:»@:

The first exception is that atomic SIMPLE-exps may be vanables as well as functors an < i%\

constructors. All variable occurrences in LNF-exps are bound occurrences. Variab.es are ":‘\":\:\? A
distinguished from constructors and functors v their first character  All vanabies begin v .'"

with the character ““?”’ A variable 13 represented 1n the machine by the Zetalisp svmby.! '\::c‘\f_\
having the same name — just like contructors and functors ':.::.:.‘.::

- RN

The other exception is that parenthesized LNF-exps also fail into the rlass of SIMPLE- AT

exp. Parentheses serve the same purpose in LNF-exps as they did :n the SKl-calculus SNOXR
and in the linear representations of SKI-G-wfls and LNF-wffs; 1e thev are used for ®

-

grouping only

ey
. AL

LNF’s Compiler (from LNF-exps to LNF-wifs) as mentioned above. 1s implemented by a
suite of functions; the topmost of which is called Compile. The (partial) Zetalisp
definition of Compile is:

X
L4

h
oN

8 For those readers interested. a BNF-like description of LNF's concrete syntax may be found in fu
Appendix B NG
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{DEFUN Compile {exp!
(COND ((Atom-p exp) exp)
((Combination-p expi 1 Combine 1Compile {Operator axpi)
(Compile Operand expi}))
({Parened-exp-p expi iCompile Exp-inside-parens exp )i
. REST OF THE BRANCHLE= OF THE COND; TO BE SUPPLIED
CIN LATER SECTIONS OF THIS CHAPTER
)
The majority »f functions making up the unplementation will not He qispiavea Many of

*he jow leve, functicns such s the predicates Atomac-exp-p Combinat, on-p and
Parened-oxp-t and *he selector tunstins Operator Operand  andg bop nsearer

whith don  provide much msight in . che anplementation will 10 e resenten

~inee ct s now kaown hew SINPLE exps are represented by che svsrtem 00 Hustrate
dow Che more compiex LNFoexps are onpuer ot sutlices ©0 show iow these ther thvpes
f LNF-exps are translated into SIMPLE oy «

3.3.2. Lambda Expressions

Y.
oo s s
Tyvy

The LAMBDA-exps in LNF differ from anstractions a the a-calculus  In the s-~aiculus
abstractions take the form

oy

g
)
«
® .
e

Yo

{N v X} where v is a variabie and X s a3 v-wif

[n LNF however a LAMBDA-exp takes the {orm ORI
o
N (BE, BE, ; BODY | where o~

»ach BE, 18 a bound expression and BODY - an LNF-exp htS
I'd
Some LAMBDA-+#xps e
A?%) (= "x ’x) :.-
~
A (vee ’x Py (vec "w "z)) [vec [+ *x Pwi(+ "y "z2)) ::'.,, "
Q.‘-;'
X0y 1 e
9 o9 -\"
A% Y A
..i'l
c.:}
The two differences between N-caleulus abstractions and LNF LANMBDA-exps are (1 a AL
F.f

LAMBDA-exp can have mocre than one frmul parameter while a M-calculus abstraction

. has only one and (2) each formal parameter f a LAMBDA-exp can be a bound expres. ARt
5 sion instead of being limited to a bound variable as in the case of the abstraction The ‘::;:',
t' first difference may be easily discharged as the LAMBDA-~xp RUNA
) L Ay N
" (\(BE, = BE,)BODY) N
'~' LTRSS
having n formal parameters 1s merely shorthand for the LAMBDA-exp. °
RO
(N (BE) (..(X\ (BE, ) BODY) ), ':s';\:’.\::i
Y i
which has only one. Thus, a LAMBDA-exp possessing two formal parameters i1s not '}:.Jk:.-:':'\
representing a binary function. [t represents a unary function whose body 1s also a ;\jx.:;g
A
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unary function — e a second order function

A hound expression (BE s either a named variable 'written 'name), an anonymous vari-
able (written as ” alcne). a constructed bound expression (CONSTRUCTED-BE), which
s simply a construction whose arguments are BEs or 1 list bound expression (LIST-BE)
which 1s sugar for a CONSTRUCTED-BE D A Turner. in his excellent paper: A New
Implementation Technique for Apphcative Languages™ ([Turner 1979¢]), also extended
the notion of formal parameters from simple variables. He limited his bound expres-
sions, however, to being what this authcer s calling LIST-BEs — LIST-BEs being sugar
for expressions of the form: PAIR XY LNF's BEs are simply Turner’s pairs general-
1zed to be arbitrary constructions.

Why have CONSTRUCTED-BEs been introduced into the language? A
T"ONSTRUCTED-BE. acting as a formal parameter in a LAMBDA-exp, plays the part of
an argument template’ A compiled LAMBDA-exp combined with (applied to) an argu-
ment will be reducible iff the argument matches the LAMBDA-exp's BE. Ap argument
A matches a BE B

for B is a variable (anonymous or named)
tand B 1s a CONSTRUCTED-BE having the form: ¢ BE, - - - BE
A has the lazy-normal form ¢ A, A,
A, matches BE,. and A, matches BE_ }).

n

Formal parameters have been generalized from being onily bound variables to include
constructed bound expressions (CONSTRUCTED-BEs) for two pragmatic reasons:

1 CONSTRUCTED-BEs obviate the need for many user defined selector functions. As
an exampie, consider the function which performs vector addition. Using
CONSTRUCTED-BEs, the LAMBDA-exp is written:

X ((vec 7x 7y) (vec ?w ?z)) (vec (+ ?x ?w) (+ "y ?2))
Without the use of the CONSTRUCTED-BEs, the LAMBDA-exp becomes:
X {?u ?v) (vec (+ (xc ?u) (xc ?v)) (+ (yc ?u) (yc ?v)))
wlere xc (yc) i8 the selector function which extracts the x (y) component of a vector.

2. A CONSTRUCTED-BE ensures that its LAMBDA-exp is used for arguments of the
kind the user intended — i.e arguments which match the template. In the above
example, the CONSTRUCTED-BEs in the formal parameter list of the first
LAMTDA-exp guarantee the function is used only with vectors. No such guarantee
is provided by the formal parameters of the second LAMBDA-exp.

An important question remains. How is (BE to argument) matching performed after all
of the variables have been abstracted away by the compiler? The compiler (the function
Compile) must produce, from a LAMBDA-exp having the formal parameter BE, an
LNF-wfl (in which there are no variables) which is capable of checking if the argument
to which it is being applied would have matched BE. This is accomplished by the gen-
eralized abstraction algorithm Abstract-be, which makes use of the functor: A-S (stand-
ing for Abstract Structure), in addition to the functors used in the definition of C-T-

7 Both anonymous and named variables also act as templates — templates that will match any
argument

:f":‘.'. ALl

L ] 1"
"E
h
g:f..fﬁ
& A5

Py

5y

;u AR
AN

se Sy

s
S Yy

v
hd
.l

. ls ," .‘
"
'.l »
>, .1' .-‘\ ®
"J"J'.'{:.'f

Y .‘l ‘¥
'.' L]

.‘. 'f" i

Pull’s

oS
I.Ii’

N

9
IS @
'-.i_t S

“n .‘O "o "I-‘
Py
sia
FL

S

-
1

ey,
'. ."’
4
A
T

T
55
0
P4
&

/
/7,
7

.,l

o
“

»
-

%

kY]

o

‘.f
¥
<
:

2,,
LI

‘5?"-?

e



E’m.\'?&“ﬂ S Gl o AR A6 0 VS Bd LERNE LG S A0 LA S Dol AL A 04 20000 000 0 ') S0 2N Rt s a0 aND g1 058 o¥y o¥0r 00 oty oRaaa LMt Ry o4 alat e atst tn he® te

Page 84

ABS (" irry’s and Turner’s abstraction algorithm used in the LNF-calculus).

Th.  OND-branch in the ZetaLisp definition of the Compile function which deals with
LA BDA-exps is as follows:

((I;a.mbda.-exp-p exp)
d (Abstract-each-be (Formals exp) (Compile (Body exp))))

Recall the definition of \-TO-LNF (from Chapter 2) which translated \-wffs into LNF-
wffs. The program section above mirrors the first part of the definition of X\-TO-LNF
repeated below:

then C-T-ABS[v,\-TO-LNF [B]]

The definition of Abstract-each-be:

|

! (DEFUN Abstract-each-be (non-empty-be-list compiled-body)
; (LET ((compiled-be ;; BE

[ (Compile (Last-be-in-list non-empty-be-list))))
; IN

’ (iF (Only-one-be-in non-empty-be-list)

;; THEN

| { © bstract-be compiled-be compiled-body)

I ;; ELSE

(Abstract-each-be

| (All-but-last-in non-empty-be-list)

' (Abstract-be compiled-be compiled-body)))))

In addition to being able to abstract simple variables, Abstract-be must be able to
abstract away anonymous variables and constructed bound expressions. Note that in
the definition of Abstract-each-be (above) the BEs are compiled before being passed as
arguments to Abstract-be. LIST-BEs are transformed into CONSTRUCTED-BEs (hav-
ing the form: (PAIR X Y)) by this process. The ZetaLisp definitions of Abstract-be and
its helper function A-S-or-A-S'-comb® come next:

8 The functor A-S' is used when abstracting away vanables introduced in CASE-exps
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W
:E;;'. (DEFUN Abstract-be

N (be compiled-body &optional (arg-reduced-p NIL))
o ;; IF THIRD ARG NOT PROVIDED THEN IT TAKES ON VALUE NIL
e (COND ((Anonymous-variable-p be) (Combine 'K compiled-body))

~ ((Named-variable-p be) (C-T-abs® be compiled-body))

N (T :; be is a desugared CONSTRUCTED-BE — i.e.
) ;; a construction whose arguments are BEs

(A-S-or-A-S'-comb

i arg-reduced-p

:: (Constructor be)

N (Number-of-args be)
¥y (Abstract-each-he [Args be) compiled-body)})))
o (DEFUN A-S-or-A-S'-comb fuse-prime-p ¢ n In[-wff)
K (Combine
b ) (Combine (Combine (IF use-prime-p 'A-S' 'A-3Vc) )
QA Inf-wif))

Some examples of LAMBDA-exps and their SIMPLE-exp equivalents: AR
K4 . _". “n-'.-
o A {%x) (=~ ?x ’x) ;"';":-':‘:"
E;‘. W ~ ;:E:Z::':::E
- NS
- X ((pair ?x ?y)) (+ ?x ?y) Srlerele
- A-S PAIR 2 +
.:'.

~I

Y, N ([xe7y)) (= % 7y)

7 A-S PAIR 2 ~

4
. N {(vec ?x ?y) (vec ?w “z)) [vec (= °x "w) (= v z)) ) ]

; A-S VEC 21C' (B' (A-5 VEC 2)) (B’ C (B’ B VEC) ~ ~) AN
o NN
o X (%u ?v) (vec (= (xc 7u) {xc *v)) {~ (¥e ’u) (yc V) ‘:_::::'.
! -\: 3" S(C (B (B' VEC) - XC) XC)(C!B' B - YC) YC) j-i:-::':'-t"
s A ((tree 7] * °r)) (append (flatten 1) (flatten °r)) AR |
! A-S TREE 3 (B K (C (B’ B APPEND FLATTEN) FLATTENY) :-::.- O
o ooy
3:‘" A (0) 1 .'_'_/‘ :
N A-S001 CriE

. [ J

o 5 2y 7Y 2 Y :-"K;“i"

.,: (.x ) X 1',‘-&',:..

K YAt
1 “" -:\:\:‘-:

% '.f-:'f:.r:.r
"/ A step by step look at or: of the more complex sample transformations follows. Start- XIS
- ing with:

w

9 ZetaLisp version of the function C-T-ABS presented at the end of Chapter 2
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X ((vec ?x ?y) (vec ?w ?2)) (vec (+ ?x ?w) (+ ?y ?z))
First, the BE:
(vec ?w ?2)
is abstracted from the body:
(vec (+ ?x ?w) (+ ?y ?2))
yielding:
A-S VEC 2 (C (B’ B vec (+ ?x)) (+ ?y)).
Now the BE:
(vec ?x ?y)
1s abstracted from:
A-S VEC 2 (C (B’ B vec {+ ?x)) (= %))
The result 1s the LNF-wff:
A-SVEC 2 (C' (B' (A-S VEC 2)) (B’ C (B’ B VEC) +) +).

The adventurous reader may wish to verify that the other sample compilations have
been performed properly.

This compiled expression will now be applied to arguments and reduced to lazy-normal
form. To make sense of the reduction, one must know the rules for the functors
involved. The rules for the functor A-S (originally presented in Chapter 2) are repeated
beiows — 1t is assumed that rules for the now familiar functors: B, B', C, C’, and + need
1¢s . redisplayed.

A'SCiX(CZIZ‘)ﬁlez,
ASciXRDU -+ A-S¢ciXIMR

I RooT: RooT:
\ 100

VPt
_—~ + (00 +

V4
2. | |vec :

: < ADDL| 6 |
A-S [VEC ADDL| 6

PP A4

Wy

»
[y
1,

'.
& %

rs
.',
L]

v
LY
«
[

ZetaLisp representation of an A-S reduction SN
Figure 3.4

The function: A-S VEC 2 (C' (B’ (A-S VEC 2)) (B’ C (B’ B VEC) +) +) applied to n
arguments (VEC 10 20) and (VEC 30 40) reduces first to:

C' (B' (A-S VEC 2)) (B' C (B' B VEC) +) + 10 20 (VEC 30 40),
then to:
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B’ (A-S VEC 2) (B’ C (B’ B VEC) + 19) + 20 (VEC 30 40),
then to:

A-S VEC 2 (B’ C (B’ B VEC) + 10 (+ 20)) (VEC 30 40),
then to:

B’ C (B’ B VEC) + 10 (+ 20) 30 40,
then to:

C (B’ B VEC (+ 10)) (+ 20) 30 40,
then to:

B’ B VEC (+ 10) 30 (+ 20) 40
then to:

B (VEC (+ 10 30)) (+ 20) 40
and finally to:

VEC (+ 10 30) (+ 20 40)

which, because it is a construction, is in lazy-normal form.
The combination labeled ‘“N:” is a newly created combination.

It was mentioned above that Turner, in [Turner 1979¢], had allowed formal parameters
to be pairs (and pairs of pairs etc.) as well as simple variables. His abstraction algo-
rithm, when it had the task of abstracting a formal parameter of the form
PAIR HD TL from an expression EXP, produced a combination of the form:

U abstract[HD,abstract[TL,EXP]]
where the functor U (standing for Unpair) was characterized by the two rules:

UZ(PAIRXY)—ZXY and
UZRDU — U Z IMR.

Note that the functiorn yielded by Turner's algorithm- (U FIN) behaves identically to the
function (A-S PAIR 2 FN) — the function that Abstract-be would have produced in this
situation. It can be seen that Turnmer's functor U is the instance of the function (A-
S ¢ n) where ¢ has been instantiated with the constructor PAIR and n with 2.

3.3.3. Expressions with Auxiliary Declarations

Expressions having auxiliary declarations come in three flavors: WHERE-exps,

WHERE*-exps, and WHEREREC-exps. Each of these three types of expression is a

variable binding form which, unlike LAMBDA-exps, associates expressions with the vari-
ables introduced.!0

10 Other FP languages poesess equivalent forms which introduce the variable before its use.
These forms are usually initiated by the keywords: LET, LET*, and LETREC.
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EXAMPLES: (of WHERE. WHERE*. and WHEREREC expressions:

ki

(= ?x°v) where ’x = 3 & v = 4

(thrice double 3} where

thrice ?f ?x = °f {’f (?f "x1 &

double ’x = x 2 ’x
(+ ?x ?y) where (tree ’x * 7y} = some-iree
(X ?x ’y) where* ?x = 3 .’y = {factoriai "x!

>pl whererec *pl = [1¢°p2] & "p2 = (2 'pl]

(factorial 10) whererec
factorial >n = (if (zerop n) then 1
else (X "n (factorial 1subl "ntt

(app {1,2.3] list) whererec
{app [] 72 ="z
app [?xe?r] "z = [>xe(app ’r ’z)]}

The three expression types differ from one another by the different scopes given tc the
introduced variables. For example consider the scope of the variables 1o the bound
expression be, in each of the following three expressions. where exp'l. e, e, and e, are
LNF-exps 1.1 be;, be,, and be; are bound »xpressicns:

exp WHERE be, = e, & be. = e, & be; = e,
exp WHERE®* be, = e; . be, = e, , bey = e;
exp WHEREREC be, = e; & be, = e, & be, = e;

In the first expression, the scope of the variatbles >ccurring in be, 1s exp 4.one n he
second their scope 1s exp and e; and in the third their scope is exp e;. e, and e;
Note the use of semicolons as separators in the WHERE™*-exp. Semicolons have been
used to siggest a sequence. In WHERE®*-exps, the scope of be,’s variables inciudes
besides the main expr-ssion, the definiens of anv succeeding declarations — thus tne
ordering of the declarations is important in WHERE®*-exps. The ordering of the declara-
tions in WHERE-exps and WHEREREC-exps is not important; hence the use of amper-
sand as a separator between their declarations. Function declarations like:

thrice ?f ?x = ?f (?f (?f ?x))
and

{app [] 7z = 72|
app [?xe?r] 7z = [?xe(app ?r ?2)]}

are transformed into declarations of the form: *function-name = LNF-exp.!? Hence func-
tion declarations, even though they differ in outward appearance, may be compiled, after
this transformation, like any other declaration. It will now be shown how each of the

11 The expression exp is called the main expression in these constructs.
12 This transformation will be detailed below
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*hree tvpes of expressions having auxihary declarations is transformed into an equivaient
simple expression

33.3.1. WHERE-exps
A WHEREF-exp having oniv ~ne jeclaration. 1s sugar for a combination having ac opera-
“or which 1s a LAMBDA-exp — e a 3redex The WHERE-exp.
exp WHERE be = e
~ 1 uisguised form of the ~omtinaticn
« be exp e

A WHERE-exp having more than one deciaration also has a SINMPLE-exp equivalent
which 1s a combination Recall that its declarations are mutually independent and have
n.v the main expression as their scope Therefore the WHERE-exp.

exp WHERE be, = ¢, & be, = e, & be; = e;
mayv be seen as sugar for the combination

(X (be;) i\ (beg) (X (bey) expl)) e, e, &4
i 18 easy to see that the scope of each of the be;s is just the main expression of the
WHERE-exp exp
As a concrete exampie, consider the WHERE-exp:

([« ”x "v) where ’x = 3 &’y = 4
Its SIMPLE-exp equivalent is the combination

(X Oxi (N (Pyii="x"y))) 3 4
which compiles to the LNF-wff

- 34

Although 1t appears that the compiler has performed two 3 contractions, this is not the
case. In fact, what the compiler (specifically. the ZetaLisp function C-T-abs) has done
has been to make use of the equivalence between the LAMBDA-exp: (A (?x) (M ?x)) and
the expression: M, which holds when ?x does not occur in M.

3.3.3.2. WHERE*-exps

A WHERE*-exp might be called sugarcoated sugar, for it is sugar for a telescoped
WHERE-exp. For example, the abstract WHERE*-exp:

exp WHERE* be, = ¢, ; be, = ¢, ; bey = e,
1S syntactic sugar for this WHERE-exp:
((exp WHERE be; = e;) WHERE be, = e¢,) WHERE be, = ¢,

which, in turn, is sugar for the combination:
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i 2 Qs;:‘::.

b (N (bey) (3 (bes) (1 (bes) exp) ) es) @) A

YWy ROATN
' The scope of be, has been italicized to illustrate that its scope really is exp and e as .
N was claimed. Note that a WHERE*-exp having n declarations, when desugared, con- ", “‘o
‘:., tains (at least) n F-redexes. Note also that a WHERE*-exp, having main expression e ’:::::Q.:I:::t:
k: and a single declaration d, is compiled identically to the WHERE-exp having main ..l'::u:::r:::
:0‘:| expression e and the single declaration d. :‘:::‘:o":o:i
1 1kt g
A LY,
. As a concrete example, the WHERE*-exp: _._.:.,
N AN
) . BN Te
X (+ ?x ?y) where* ?x = 3 ; ?y = (factorial ?x) :N'::';\’:Z"
o . SN
L is sugar for the WHERE-exp: :‘_\'::"3--:, )
) o fpded
O ((+ ?x ?y) where ?y == (factorial ?x)) where ?x == 3 ottt
. . . . [
which is sugar for the combination: e
. . . 5 .':::0'"0‘
i (N (2x) (N (79) (= 7x 2v)) (factorial ?x))) 3). '...I....:‘:
| = T . . S . peiadit e,
he WHERE*-exp, the WHEREF-exp. and the combination thus compile to the same .4- "::::"é'
% AT. ‘n b
o LNF-wif: ity
S - facterial 3. "
- e
...: -*‘.':C_'-.,‘ o
% A
- 3.3.3.3. WHEREREC-exps TN
. AN
-» The declarations in o WHEREREC-exp are neither sequential (like those in WHERE*- d
" wp=tnor mutnally independent {(like the one:in WHERE-exps), but are mutually depen- : %::"l
L gt Tl s to sav that the scope of each definiendum includes all of the definientia in - X :l';
":-j - . w5 the mam «<xpression. Just like WHERE*-exps and WHERE-exps, however, ."‘- g, l:!
- WHEREREC-exps can Te desugared intn simple expressions. Before showing how to "\‘.\::l
!‘I- desugar a WHERLREC-exp havinz many declarations, it wiil be shown hiow to desugar a e J,‘,.
. WHUREREC-oxp hoviug enly coe declaration. Consider the WHERREC-exp: SRR
'y R, ‘ NN
b, exp WHERERLC be = ebe, N Gyt
. . ‘ : : i
v where ebe 15 an LNF-exp containing some free occurrences of the variables in be. The _\,?,:::n: )
¢ following combination is equivulent to ebe: \"':-:::\'*"\.'{
) PRI
] (\ (be) ebe) be. s 1
“ R . . . . \
oy Phis combinuation also has the property thut its operator does not contain any free :;’:J‘:ﬁ,\&\
.'.; occurrences of the variables it be. Replucing ebe with ({X (be) ebe) be) in be’s declara- M‘;} :
) tion gives a declaration having the form. :c;x"},"t.
e Y
’ be - F be, Py
N . . ‘ . , . . . . A & oG F ]
A where no variable in be occurs free in the function F. Any fixed-point of the function F .:,‘-,::4.’\-,.
.\{ (having a form which matches be) will satix{y this equation.!? Recall from Chapter 2 ‘\:.::.,f,-"
. . . . . ~ - . 'a »
o that the combination (Y G) is equal to (G (Y G)) for all functions G. Thus (Y G) is u Pt
o fixed-point of any function G. Hence (Y F) is a fixed-point of the function sy
W) e N}h't_
13 All fixed-points of F will be of this form since, by its definition, it 1s only apphcable to argu- .
5 ments of the desired form. et Ny Co
Ny N
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.
¢
i gttt ad
: F = X (be) ebe. e .!35.5:
. Therefore, the noncircular declaration:
;:‘ be = Y () (be) ebe)
:: is equivalent to the circular one in the WHEREREC-exp. Since the declaration isn’t cir-
" cular, the WHEREREC-exp may be desugared (just like a WHERE-exp) into the combi-
& nation:
:" (X (be) exp) (Y (X (be) ebe)). .'ﬁi".‘ 'f;"a
X A concrete example follows. The WHEREREC-exp: ;:JJ‘J:} N
:: (first 5 ?x) whererec ?x = [1,2¢7%x] E’E:ji: t:::
L) ‘ SRR
is tranformed first to: > ®
:: (first 5 ?x) whererec ?x = ((X (°x) [1.2¢°x]) ?x) oA
N o‘;'a‘:'n':‘t'.‘.a‘. ,
\ : OO
‘: and then to: ',‘l‘.‘\:; l"..':..
L) YO 4,
' (first 5 ?x) where 7x = (Y (X (°x) [1.2¢7x]}) ot
and finally to: 3 A
o NI T
n (\ (?x) (first 5 7)) (Y (M (?%) [1,227x])). i~ !
{ Sl
..a This combination is then compiled to the LNF-wff: 2‘:& ~'.
» Al
¢ FIRST 5 (Y (B (PAIR 1) (PAIR 2))). i&%M%
-
. Another example, whose definiendum is a CONSTRUCTED-BE, follows: ﬁ\ ..":‘::‘M
: ?x whererec [?xe?y] = [[1e7y]e[2¢%]] o ::}*{fw
A e N,
N is transformed first to: ;‘:"::_;i%.
?x whererec [Tx*?y] = (X ([?xe?y]) [[107y]e[2?x]]) [Txo?y ) )
| Pxe25] = (8 (Pxety]) [11+7y)e o2 [Pxey) e
then to: R
= R
- ?x where [?xo?y] = (Y (X ([Pxe?y]) [[te?y]e[2¢7x]])) - F:'\:".:‘ﬁ)-
o
o and finally to: &I".\\.ﬁ: l\..:
- (N (Pxe?y]) 2x) (Y (% ([Pxo?y]) [[1o?y][27x]])). ’?;,;'vg‘:‘ ;
N The function Compile would now dictate that this combination be compiled to: -:-’:3 "::
A Ao ¢
b A-S Ryl
K. ROy
12>A1R NN
. ' ®
:. K :\':-..“:-.":x {
3 (Y (A-S PAIR 2 (B (C' PAIR (PAIR 1)) (PAIR 2)))). e
- - L4 'J.
L This LNF-wfl, however, has no lazy-normal form! To see this, recall the rules character- >u :’:
3 izing the functor A-S: . g

A-SciX(ch-"Z,-)—vXZI---Z,-
A-SciXRDU -+ A-SciXIMR

The functor A-S’s second rule says that A-S’s fourth argument must be reduced before ’

RN

------- W W LY W W LN Loy o, a1 AL R - -t ACRCE ISR AT TR LR Y g Cal _./' .'
e S A L R S !
N NN ) ST -\§;§L *~§~§\§5 NN ’Q&.' \Ew. v
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the first rule can be applied — i.e. any function having the form (A-S ¢ i X) is strict.
Hence to reduce the LNF-wfl produced by the compiler, one must first reduce its fourth
argument. Its fourth argument has the form: (Y G), where G is also a strict function.
Since this combination reduces to (G (G ...)}, it should be clear that G being strict
implies that this combination will not have a lazy-normal form. Therefore, the original
LNF-wfl will not have a lazy-normal form.

To solve this problem — that is, to compile the WHEREREC-exp to an LNF-wff which
has a lazy-normal form — the strict function:
A-S PAIR 2 (B (C' PAIR (PAIR 1)) (PAIR 2))

is replaced by an equivalent (in this context) nonstrict function. The function which is
used in its place is:

APP-TO-ARGS 2 (B (C' PAIR (PAIR 1)) (PAIR 2)).

Récall from Chapter 2 the reduction rule which characterizes the functor APP-TO-
ARGS:

APP-TO-ARGS iX Y — X (ARG 1Y) ... (ARG i Y).

This rule implies that any function of the form (APP-TO-ARGS i X) is nonstrict (it
doesn’t care what form its argument Y takes) and, when applied to an LNF-wff having
the form (¢ Z, - - - Z;), reduces to the same LNF-wff to which the combination (A-
SciX(eZ, - Z;)) reduces. To see this, return to the sample LNF-wfl (having made

the function replacement) and view a linearized display of its reduction to lazy-normal
form.

A-S PAIR 2 K (Y (APP-TO-ARGS 2 (B (C' PAIR (PAIR 1)) (PAIR 2))))
reduices to:

A-S PAIR 2 K (APP-TO-ARGS 2 (B (C' PAIR (PAIR 1)) (PAIR 2)) H)
via the Y rule, where H is the cyclic LNF-wif:

(APP-TO-ARGS 2 (B (C' PAIR (PAIR 1)) (PAIR 2)) H).
The next veduction, using APP-TO-ARGS’ rule, yields:

A-S PAIR 2 K (B (C' PAIR (PAIR 1)) (PAIR 2) (ARG 1 H) (ARG 2 H)),
which via the B rule becomes:

A-S PAIR 2 K (C' PAIR {(PAIR 1) (PAIR 2 (ARG 1 H)) (ARG 2 H)),
which reduces via the C' rule to:

A-S PAIR 2 K (PAIR (PAIR 1 (ARG 2 H)) (PAIR 2 (ARG 1 H))).
Finally, A-S’s first rule may be applied. The result is:

K (PAIR 1 (ARG 2 H)) (PAIR 2 (ARG 1 H))
which reduces via the rule for K to the construction (a pair):

PAIR 1 (ARG 2 H),

which is in lazy-normal form.
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\J
Before continuing on with WHEREREC-exps, it might be mentioned that Turner in ’: ‘5 !
[Turner 1979c], when presenting his compilation scheme for expressions with mutually AN
dependent declarations, made the error of using his strict functor U instead of a non- N':‘-- "t‘,
strict equivaleni. The functor he meant to use ([Turner 1983]), instead of U, was the ::{ "
nonstrict functor U’ characterized by the rule: t.-::.i-“ W,
LNy k
UXY—-X(HDY)(TLY) t&,_.‘y. A
where HD and TL are the selector functions which retrieve the head and tail of a pair, NV
respectively. This functor U’ may be viewed as APP-TO-ARGS restricted to working -:j-:._\';-\.:".
on pairs — with HD and TL playing the parts of the functions (ARG 1) and (ARG 2). IENAIATN
AN,
POACALN A
Up to this point, the WHEREREC-exps that have been dealt with have contained ;\""""'ff'
only one declaration. WHEREREC-exps having more than one declaration are compiled R
by first transforming them into an equivalent WHEREREC-exp having only one declara- :j."\ '.‘ '1::‘,
tion, and then compiling this new WHEREREC-exp as detailed above. Consider the :"'";)"\'J- " ,1:'_
WHEREREC-exp below: X H o
exp WHEREREC be, = e, & be, = e, & be; = e, ::1.-'2; uth
having three declarations. The following WHEREREC-exp, having only one declaration, -?.:::r:-:’
is equivalent to it: ::f:«."":*:_
- .&:& g
exp WHEREREC (OPDS be, be, be;) = (OPDS e, e, e3), [Ei:__._ 'Ei
where OPDS is simply a constructor. Since it has just been shown how to compile Ittt
WHEREREC-exps of this form, nothing clse need be said. L}‘.T._!'._
RN
As a concrete example, consider the WHEREREC-exp: :‘;:_f::.:"
AR
?pl whererec ?pl = [17p2] & ?p2 == [2?pl]. :::':-'._4".‘_: )
a0 w
This expression is transformed to the equivalent WHEREREC-exp: ,‘\"\ M: N
.
?p1 whererec (OPDS ?pl 7p2) = (OPDS [1?p2] [2¢7p1]) oy
which is equivalent to: :::?i';:g
X » !
?pl whererec (OPDS ?pl1 ?p2) = ::-i:ﬁ'-:\*
e LM \)-'
(M ((OPDS ?p1 ?p2)) (OPDS [17p2] [2¢7p1])) (OPDS ?pl ?p2) T '" -
which is equivalent to the WHERE-exp: ::':::“:::':::‘Z:
AR
?p1 where (OPDS ?p1 ?p2) = Y (X ((OPDS ?p1 ?p2)) (OPDS [1?p2] [2¢?p1])). R
'..-v..." \ A -
This WHERE-exp is just sugar for the S-redex: :-":-,":;:':7:"
.%.' (M ((OPDS ?p1 ?p2)) ?p1) (Y (N ((OPDS ?p1 ?p2)) (GPDS [1?p2] [2¢7p1]))) ...
- , : KOADANIONK
.E which compiles to the LNF-wff: ._:',:s‘ e
: AS R
: OPDS :. .v:.“:._-:..-'
“a 2 '-."-‘ ‘.-"..\‘:
» K [ ]
i (Y (APP-TO-ARGS 2 (B (C' OPDS (PAIR 1)) (PAIR 2))). f?,;;;
l. :?..:IS-; n.'
» o ="
o In each of the four FP languages: 'ﬁ”\’
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°
%9
Y
iy
. AN "".":0:
e SASL — St. Andrews Static Language ([Turner 1979b] and [Turner 1979¢}), . E% A
)
» l'
e KRC — Kent Recursive Calculator ([Turner 1981a], [Turner 1981b], and * o
[Turner 1982}), :;gs& .
* i
)
e Miranda — D.A. Turner’s most recent effort ([Turner 1984b]), and ::"' :"'l:
PO
: A,
e ARC SASL — developed by Burroughs Corporation in close collaboration with Pt N}fl‘?
D.A. Turner ([Richards 1984]) NG
S
there is only one expression form having auxiliary declarations. Each of these languages ::;:_’,\j-.ﬁ:}
has collapsed the WHERE, WHERE*, and WHEREREC expressions into one expression: :-r_?_';::-:::v:"' '
the WHERE expression. The compiler detects which definientia are dependent on which :}:-,,:-v_;._
other declarations and then compiles the WHERE expression either like LNF’s ® ®
WHERE-exp, if the declarations are mutually independent, or like LNF's WHEREREC- AR
. ; : eetaligtit
exp, if any two declarations are found to be dependent. Some examples of this type of :.::'..::,.::.".:..::
WHERE expression and their LNF equivalents follow. " ':"l.:"r..éi::f,'.
ok d
KRC: x+y where x = 4*y; y = 2 ‘j_ i ".:
LNF: + ?7x ?y where* 7y = 2, ?x = X 4% ® o
ey
KRC: pl where pl = 1:p2 ; p2 = 2:pl o I\ﬁ‘_cf.‘:;::
LNF: ?p1 whererec ?pl = [1¢%p2] & ?p2 = [2¢7p1] i‘a"&*ﬁ"ﬁ*
. ii h-
ERS AT
e it JE 00 )
Although many of LNF’s constructs have been borrowed from Turner’s languages, it was :' * °
felt that Turner’s WHERE construct was carrying too heavy a load. A reader of a KRC :f'ﬁ\'i:_;-:::
program must look inside each of the declarations in order to determine how the declara- NN
tions interact. In LNF, however, the construct’s keyword (either where, where*, or \-:‘-'::\:-__:
whererec) tells the reader whether the declarations are to be interpreted independently, «.:':,-.ﬁ:’;
sequentially, or mutually dependently. For this reason, it was decided to spread the VAR
work of Turner’s WHERE expression appropriately to the WHERE, WHERE*, and ,: __\,_. i
WHEREREC expressions. ;x;:“:‘:p» :
s
):‘(.‘\'-P}_-' "o‘:
2o ¥
. . )
3.3.3.4. Function Declarations oy :_.}-

. . ) ) o L
Functions defined by an equation or a set of equations are both natural to write and NANACAY
easy to read and understand. It is assumed that, when a function is defined by a set of -s:_:.‘;w"\i\"
equations, the equations are pairwise independent — i.e. only one equation is applicable N ‘;-‘;"‘n.\’__:j
in any one situation. This property may be verified at compile time by attempting to '::-._J"{:'.‘_';-r
unify ([Robinson 1965]) each pair of formal parameter lists. If a pair does unify, then a7 .:bf.\ A
the set of equations is not pairwise independent and therefore not suitable as a definiens .-9,:«-—'2-:
for a deterministic function. The LNF compiler performs this check and issues a warn- NGNS
ing that the set of equations is “‘order dependent” if it finds a unifiable pair of formal '-:'::':-:'.-‘{:'3
parameter lists. LT

NN
PRRNAN

An example of an unacceptable equation set: Py °
{factorial 0 = 1 | factorial ?n = X ?n (factorial (subl ?n))} V:.\'-:,:}'ﬁ
RN,

since ?n and O unify. The following definition of the list appending function: ,
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{app [] 72 = ?z | app [?x*7r] 7z = [?xe(app ?r ?z)]}

is acceptable because there is no substitution (unifier) which will unify {] and [?xe?r].

[t was claimed above that functions declared via a single equation like:
thrice ?f ?x = ?f (°f (?f ?x))
or by a set of equations like:
{app [] %2 = ?z | app [?x*?r] ?z = [xe(app ’r ?2)]}
could be transformed into declarations of the form:
?function-name = exp.
This transformation will now be detailed.
First, consider a function declared via a single equation. These declarations take the
form:
ZETALISP-ATOM be, =  be, = exp.
An equation of this form is tranformed into the equivalent simple declaration:
?ZETALISP-ATOM = X (be; - - be, ) exp.!?
For example, the equation:
thrice ?f ?x = (?f (°f 7))
1s transformed into the declaration:
?thrice = X (?f ?x) (?f (7€ (°f ?x))).
As a concrete example, the WHERE-exp containing two function declarations:

(thrice double 5) where
thrice ?f ?x = ?f (°f (°f °x)) &
double ?7x = x 2 7x
compiles to the LNF-wil-

CC5W(WDBx 2

[f the function is declared by a set of equutions, then the equation set is transformed
into a declaration of the form: ?function-name == exp. where exp 1s a LAMBDA-exp
having a CASE-exp for a body. Consider as an example the following set of equations
defining the function F:

{F be,; be;; = body, |
F begl b822 = bOdy2 |
F be31 besz = body3}

Note that for this set to yield a deterministic definition for the function F. no pair of

14 Note that ?ZETALISP-ATOM must be substituted for (free occurrences of) ZETALISP-
ATOM throughout the scope of the declaration This scope varies depending on the type of expres-
sion (WHERE, WHERE®, or WHEREREC) of which the declaration 1s a part
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add to the size of the code and in turn increase the number of reductions required any-
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:: formal argument lists: (be; | be;,). (be;; ve;,). 1<:,7 <3 & 15%; may be unifiable.
o This equation set is sugar for the single equation:
& F V1 Vo =
;' case (opds v, v,) in
D (opds be,; be;;) — body, |
' (opds bey; beys) — bodys: |
/ (opds bes; bess) — body;
Y endcase
o
" where v, and v, are two new system generated variables. This single equation is then
» transformed into a simple declaration using the method described above. The CASE-
exp’s transformation to a SIMPLE-exp is detailed in an upcoming section.
X [n certain situations, equation sets are transformed by the compiler into more efficiently
K reducible forms. In the case where the first parameters of the equations (be,;, be,;, and
) be;;) are found to be pairwise independent (not unifiable), then the equation set is
' transformed to this equation:
. F Vl ==
. case v, In
~ be;; — (X (bej,) body,) |
L be;; — (X (beys) bodyy) |
bey; — (X (be;y) bodys) AR
’ endcase B _‘_w.",'.:'.'_ .
» which avoids the introduction of the variable v, and the constructor opds; both of which :"_-:'::'::’-'.:
- . s _‘- LS

%S

€

time the function is used. The user of the system is therefore encouraged to place the

:.' .\ -('.
- ‘“deciding” parameter (if one does exist) in the first parameter position. To illustrate the NGO
difference that the ordering of the formal parameters can make in the compiled code, t x ‘_g :
observe the code produced for the following two equation sets. Both sets define a predi- :'_?{"—ﬁ‘-ﬁ*
- cate accepting a number n and a list 1 as arguments and yielding TRUE iff n = length 1. -._':-'.'_;-‘:"t':ﬁ
Al Their only difference is that the first predicate expects the number as first argument and :;:-"'.i?)‘., :
A the list as second and the secon) predicate expects them in reverse order. The first set: :"‘-::'C:E:
{P1 ?n [?e?r] = P1 (subl ?n) ?r | » [ )
: 2 1] — zerop ? RS
P1 ?n [] = zerop ’n} ::_.;:_:.:‘_.-:‘}E
compiles to code containing 35 system generated functors, and to reduce the expression: :-:::-: _-:'*_{_";-.
A P14 [1,2,3] to FALSE takes 79 reduction steps. The second set. RO
. AN A
- {P2 [?¢?r] ?7n = P2 ?r (subl ?n) | LA e
3 P2 [] ?n = zerop ’n} %;c;}r;-'\
. ) PRI
- compiles to code having only 17 new functors, and to reduce the expression P2 [1,2,3] 4 \f:??..\ N
- to FALSE takes only 38 reduction steps. '_:":'l'::"\":
k- _-.t_\.'{ ‘;\';,r-
* ‘.‘J‘\:'\F\I\
3.3.4. List Expressions '."
N
List expressions (expressions whose lazy-normal forms are either [ ] or take the shape: ;;‘
p PAIR X Y) come in several flavors: (1) explicit lists like: '
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[1)21314]1
[fat,2,tire,1023],

[aeb], and

[a,bee[]];

(2) arithmetic sequences like:
[1..],
[10,10,.],
[1,3,.],
[0,-1,.],
2,4,..,100],
[1,..,1000], and

(10,7.5,..,0]

and (3) implicit lists. Turner introduced implicit lists — he calls them “ZF expressions”
— in his language KRC. He gave them this name since they are based on Zermelo-
Frankel set abstraction — that is for every set A and predicate P, there is another set
(B) whose members are exactly those members of A for which P holds. The equation
defining the new set B is written in [Halmos 1974] as:

B = {x€A : P(x)}.15

Implicit lists may be expressed in LNF in two ways. The first form is very similar to
that used by Turner. The only difference is that, in LNF, square brackets have replaced
curly braces as the construct’s enclosing delimiters. Since these expressions really are
lists and not sets — i.e. their lazy-normal form is either the empty list ([]) or a pair —
it was felt that braces were inappropriate bits of sugar. A few examples of implicit lists,
using the modified Turner syntax, follow:

[(subl (X 10 ?x)) | ?x€[1,..,100]]
[?xe?y] | ?x€[1,...5]; (odd ?x); ?y€[100,101]]

[(+ ?x ?y) | [?xe?y]€(zip [1,..,10] [100...,110]); zerop (rem ?y ?x)]

A new syntax for implicit lists, which the author prefers over the one just described.
exists in LNF. The essential differences between the two notations are: (1) where the
local variables are introduced, and (2) the physical location of the scopes of the intro-
duced variables. In the modified Turner syntax, variables are bound after their use
(similar to WHERE constructs) and their scopes are not contiguous. In the new syntax.
variables are bound before their use (similar to LET constructs) and scopes are always

16 Turner would have written this expression as {x|x€AP x}

]
;n 4
o~y

Y

-,-

Al
a2
2
L]

NN e
Ay

A
VAN
L |
KR
‘u'b'\{} .'5,
-

~ ?-‘.";-
. E e
y

L

T
i
VAT

@

E_*_ 9 r_®_°F
PR
e P
o
P
Y Y
ot
2NN

2

LA
«

P04
b2

sl

e

IS SR A
?
-
o
I
22

Padl 4 u"l
;'I:'l:'f;(.'.‘
XX R
s

Z L

A AL

s'
W e,

4

N
'I g




Page 98

contiguous. The implicit lists above are redisplayed below using this new syntax:

for-each ?x€[1,..100]
instantiate (subl (X 10 ?x))

for-each ?x€[l,..,5]
such-that (odd ?x)
and-for-each ?y€[100,101]
instantiate [?xe?yj

for-each [?xe?y]€(zip [1,..,10] [100,..,110])

such-that (zerop (rem ?y ?x))
instantiate (+ ?x ?y)

The SIMPLE-exp equivalent of each type of list expression will now be displayed.

3.3.4.1. Explicit Lists

Explicit lists are easily desugared to simple expressions using the constructors: { } and
PAIR. To understand how arbitrary explicit lists are transformed, it is enough to see
b how the following sample expressions are tranformed:

[1,2,3,4] becomes PAIR 1 (PAIR 2 (PAIR 3 (PAIR 4 [}]))),

[Aat,2, TIRE, 1#23] becomes PAIR FLAT (PAIR 2 (PAIR TIRE 23)),16

S re &

[a®b] becomes PAIR A B, and

< Ll

[A,be(pair ¢ [])] becomes PAIR A (PAIR B (PAIR C [])).

3.3.4.2. Arithmetic Sequence Expressions

Arithmetic sequence expressions are a convenient shorthand for monotonic sequences of

numbers, where the k™ element (e; ) in the sequence may be expressed by: e ;+(k-1)c,

for some constant ¢ — i.e. arithmetic sequences. These sequences may be finite or
S infinite.

, Finite arithmetic sequence exps take either the form [X,..,Z] or [X,Y,..,Z]; both of which
are sugar for unknowns of the form:

FBT X W Z,
representing the sequence:

From X By W To Z,

where W is either 1 or (- Y X), respectively. Some finite arithmetic sequence exps and
' their SIMPLE-exp equivalents follow:

18 The LNF system 15 case insensitive
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[2,4,..,100] becomes FBT 2 (- 4 2) 100,
[1,..,1000] becomes FBT 1 1 1000, and

(10,7.5,..,0] becomes FBT 10 (- 7.5 10) 0.
Note that in a list of the form [X,..,)Y] (without a second element), the second element is
assumed to be X+1.
A sample (linearized) reduction of the finite arithmetic sequence exp: [2,4,..,100] to lazy-

‘ normal form:!7

FBT 2(-42)100 — FBT 22100 — PAIR 2 (FBT' 4 2 100).18

Infinite arithmetic sequence exps look like [X,..] or [X)Y,.] — both of which are
transformed by the compiler to wfls taking the form:

FBX W,
representing the sequence:

From X By W,

where W is either 1 or (- Y X)), respectively. Some sample transformations of infinite
arithmetic sequence exps are displayed below:

(1,..] becomes FB 1 1,
[10,10,..] becomes FB 10 (- 10 10),
[1,3,..] becomes FB 1 (- 3 1), and

[0,-1,..] becomes FB O (- -1 0}.

A graphical representation of the reduction of the sequence: {10.10,.] to lazy-normal
form follows:

17 The reader may, at this time, want to refer back to Chapter 2 for FBT's reduction rules
18 FBT' acts just like FBT except that it assumes its arguments have already been reduced to

numbers.
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B SUB1 (x 10)
is the result of compiling the LAMBDA-exp
X (?x) (subl (X 10 ?x)).

To see that this compiled wff has the expected lazy-normal form — that Is:
PAIR X REST, where X is a wif which reduces to 9 and REST is a wff which reduces
to the rest of the list — follow its two step reduction to lazy-normal form:

MAP (B SUBI (x 10)) (FBT 1 1 100) —
MAP (B SUBI (x 10)) (PAIR 1 (FBT' 21 100)) —
PAIR (B SUBI (x 10) 1) (MAP (B SUB1 (X 10)) (FBT' 2 1 100)).

It should be (fairly) clear that the first argument to PAIR (the head of the list) reduces E:d::’;if
to 9. It should also be easy to see that the second argument. since it is just like the or- -ﬁ\::'s-::'.‘;
ginal LNF-wff except that (FBT 11 100) has been replaced with (FBT' 2 1 100), will :\::?:::
reduce to [19,...,999]. e
PRy

L

In general, an implicit list having the form: SR

for-each be€X N

instantiate BODY AT

(n '.l . . N
a RS
- T ety
[ N T
ALl L LLL L

compiles to a SIMPLE-exp having the form:

MAP FN LIST, e
,.-.’ -‘(' -
where FIN is the result of compiling the LAMBDA-exp: :-;-',:»_jt"jc
(» (be) BODY)) 7 :;'i.;’é
CACAS
and LIST is the compiled version of X. ""J“'.
AN
As illustrated by ti2 two other examples of implicit lists above (see page 98), implicit '\".-::-'::;-.r-
lists may, in general, have a more complex structure than that just described. Besides -.:;-.::-.;C'_:
always beginning with a phrase of the form: for-each be€X (called a generator by :’,:_;::‘_:;
Turner), and always ending with a phrase of the form: instantiate BODY, an implicit :‘.-:.rf'

list may have one or more intervening phrases either having the form:

.- and-each be€X (more generators)

2

or:

.
)
»

such-that X (called guards or filters).=0

Bt 20 e . Sy e oy
" l' t )

» .' ¥ A
AN

® The FP language ALFL ([Hudak 1984c]) contains a similar, although restricted, con- TICALT
, . . . - )
A struct called an “ordered bag”. The first restriction is that all generators must precede '-‘.'-';\::\:4
A . i . . . AN
s all filters. More serious, although infinite lists are supported in the language, the ordered NN
’ : o NS
W bag: [* [x, x<-Nats: y<-Nats *] produces the list: {[1,1],[1,2],{1,3],{1.4],...] — a list in TN
2 . - DD RSN
S which most of the elements in the cross-product do not even appear! ooty
. - . . . - . . . . - . .
o To illustrate the scoping of an implicit list, consider the following for-each expression: RV
O Y
B RN
> e ) '.\'.'.'--.'J
* 20 Appendix B contains a BNF-like description of the syntax of implicit ist expressions ‘,-:,,-:-',-:'_-
e A,
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for-each be,ELIST, ;-;i':' NI

such-that GUARD, ®
f h

and-for-each be,€LIST, :,_W X
such-that GUARD, ~ A

instantiate EXP o5 ;}&\"

The expressions in the scope of be,’s variables are: GUARD,, LIST,;, GUARD,, and 2 ®
EXP — ie. the expressions following the introduction of the bound expression be,.
Similarly, the expressions in the scope of the variables in be, are GUARD, and EXP.
The expression EXP is called the template of the implicit list.

e,
2,
oy,

Yy

An expression having the above form is transformed into an equivalent combination (see
below), and then compiled.

<
4
Z°

ENUMERATE Rrararnate
(MAP ( (be,) .,..;":-..::
(IF GUARD, ‘yr.,;.\-; .::;.;
(MAP () (be,) EXP) e e
(FILTER (X {(be,) GUARD,) :.é-‘,‘\.:::f‘.r:;;
LIST,)) AN RN
o & W
LIST R
! SER

Careful inspection of this rather complicated expression reveals that it reduces to the
expected construction — a (possibly empty) list of instantiated EXPs. To understand
the expression, one must be familiar with the workings of the functors: MAP, FILTER,
and ENUMERATE. The rules defining the functors MAP and FILTER are straightfor-
ward (see Chapter 2), but the rules which define ENUMERATE are not. ENUMERATE
may best be understood not by peering at its rule and the rules of the other functors
upon which its rule depends (TURN, UP, and DOWN), but by seeing what kind of con-
struction it expects as an argument and what kind of construction it produces from that
argument.

ENUMERATE expects as argument a list (empty, finite, or infinite) of lists, each of

which may also be empty, finite, or infinite. That is to say, an appropriate argument for
ENUMERATE takes the form:

[DCIIIXIQ:XBV"]:
[Xa1. X202, X 03,---],
[[X]317X32rx33:"']:

OO

. . . RN .i\';

ENUMERATE, applied to such a list, reduces to the list: N NDERDS
TN AN

P(11:X12,X21,X31 X2, X 13, X14, X 03, - ] . :.::,:"':jx:_:‘_.
=" N> ~\l L)

Thus ENUMERATE borrows the scheme Cantor used for demonstrating the countabil- °® P

ity of the rationals and produces a flattened list containing all of the elements in each of S""_._-_,}‘;E;':} 5
its argument’s sublists. The rules defining ENUMERATE and its “helping” functors ~T i\i\:‘b';_\
were gleaned from- a functional definition of ENUMERATE by F. L. Morris, PN NG

[Morris 1984).

s 77,
el
%
s

ot aNCx
(N v
JRRNINN
RAENES &'_
PR I I i S Y] AR IR L - B I o - A
O N I e N T T N R R Y e R AT RS
N R At et AL AT, s A, e S D L N A SN U
N e e B R e A A TP AN o -~ RO NN,
e gt e e e e N N e e e N N N N N N N e
VEN PCITES 48, LSNPSR R TR S AN SN 5 A Tl L a ] . X - 4



Page 108

Turner, for his ZF expressions in KRC, uses a different implementation strategy involv-
ing the functors FLATMAP and INTERLEAVE — instead of ENUMERATE and

{ MAP 2! The main difference between this contruct’s implementation in LNF and KRC is
b the order in which the elements of the implicit list are produced. Turner's implementa-
tion is biased more towards the first generator — i.e. the first list in a ZF expression is

“run through’ much more quickly than the rest of the lists.

An implicit list, viewed as an initial phrase P (which may be either a generating or filter-
ing phrase) and remaining phrases R, is transformed as follows. In case:

Lo g a2

P is be€X and R consists of just a template:
MAP (X (be) R) X

P is be€X and R contains only guards GS and a template T:
MAP (X (be) T)
(FILTER (X (be) (conjunction of the GS)) X)

I

P is be€X and R contains generators:
ENUMERATE (MAP () (be) (transform R)) X)

P is a guard:
’ IF P (transform R) []

The implicit list:

for-each ?x€[1,..,5]
such-that (odd ?x)
and-for-each ?y€[100,101]
instantiate [?xe?y]

is transformed to the combination:

| ENUMERATE

! (MAP

; (C (S' IF ODD (C' MAP PAIR (PAIR 100 (PAIR 101 [])))) [])
(FBT 11 5)).

This compiled implicit list reduces to its lazy-normal form:

(114100}
UP (]

¥ [MAP (PAIR 1) [101]]
(MAP (C (S' IF ODD (C' MAP PAIR [100,101])) [ ]) (FBT' 21 5))]

in 14 reduction steps.

3.3.56. Conditional Expressions

There are two conditional expressions in the LNF language IF expressions and CASE
expressions.

2! Turner's implementation scheme 18 explained quite nicelv in [Abelson 1985)
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3.3.5.1. IF Expressions

The IF-exp:
if CONDITION then THEN-EXP else ELSE-EXP

is simply sugar for a combination having operator: (IF CONDITION THEN-EXP)
and operand: ELSE-EXP. Its representation, therefore, takes the same form as any

combination having three arguments. ®
l. i.« N h. .~
\‘.“\"s~_'-..'%.r
RS
A A,
NSO
S
% .-.'_-.‘:5'_-.:,-..'.
N '!\. A “_‘.

I\

+
o] ®
4
°"

X \F x ;:_._»:'.t- M
»

s L
A
'1(:"‘\ fﬁl’:‘ ]

L ®
A AN

- , — , NI

ZetaLisp representation of the conditional: if x then + else X AN
Figure 3.7 '.'j\.:;"?f‘. LG

" """ N
._\‘::i’.\\-":}i' ]
ANV A

3.3.5.2. CASE Expressions agf,‘__.,_r,,! y
s :."\It":"..}".:

CASE expressions (CASE-exps), introduced in the discussion of function declarations, are :f;‘:'-“'.-.'.',“.'{v",‘}:
conditional binding constructs.?? The CASE-exp: ‘;}l::f;::,-.
PR ”)\'.;, Wy
case E in U A

— ®
cbel BODYI l r‘,”‘_i*‘g\_'\;{-
cbe, — BODY, | Ay
L)

)

LY
";;v‘

'y l. R
I";".J
e

NS

cbe, — BODY, _'{;'{-;-\.;,N;;\.x-
R e vy

endcase -k\':\ﬁ\h 4
attempts to match the object of the case (E) against the pairwise non-unifiabl obin- o o
P j (E) 2g 2 able ([Robin W G

son 1965]) case templates (cbe;s) — which are just constructed bound expressions. If E

“u
S
A
-~
S
A
)

. . ) KRN NLE
matches template cbe;, then the case expression reduces to (the compiled equivalent of :_:';a.'- .;-.::':'"
the 3-redex): f;‘-':-:\_ N ;

> o
AN
(x (cbe;) BODY, ) E. SO
e o
If E does not match any of the templates, then the CASE-exp reduces to an unknown. .:-r:f::.z:w‘_'d-
A CASE-exp is transformed to a combination, employing the functors A-S-E, A-S-E', :E::‘;ﬁ:’i{f
and A-S'. The A-S' functor is a nonstrict version of the A-S functor — inasmuch as it :\'-.‘;\‘f,xﬁ
does not reduce its fourth argument. The functors A-S-E and A-S-E’ are best explained -"‘e-:w:.r:f:‘.’
by studying A-S-E’s four reduction rules, which are: LSS
o
_— PR TR Y,
22 Other FP languages which contain similar constructs include ML ([Milner 1983]), Lazy ML .-.';.':\:\;.\"'
’{Augustsson 1984a], [Augustsson 1984b], [Johnsson 1981b], [Johnsson 1983], and [Johns- ':, \-‘_\f:q‘:f
son 1984}), and HASL ([Abramson 1982b] and [Abramson 1983]) :\I';SF\:'\::\;
-~ 'Qi‘s:: :
AT
'3‘” RUNA
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ASE ASEciXY(c Z, - Z,)—X E&ﬁ‘:
A-S-E ¢, i 92y - Z;)—=Y, WA
if c,;.%_ciz;i iYé(ic~ 1 /) ‘?:::}&Et-;a
ASEciXYFN—Y AU
AS-EciXYRDU — AS-EciXY IMR TN
ARG
Together, these rules mean that the LNF-wfl: et :
ASEciXYZ f::
is reduced just like the wif: ,"’,‘
S '.’.'-*\»',‘
IF (AND (= ¢ (CONSTRUCTOR Z)) (= i (NUM-ARGS Z))) ".'-:'.,'.'_-.'_.r,“-,
X RPN
Y ) ®
: ’ ! " ‘0':?‘..".‘..‘:
A-S-E is a condensed form of “Abstract Structure Else”. The functor A-S-E’ is to A-S- "' "'o.:‘,:
E as A-S' is to A-S. CASE-exps are compiled by the function Compile-case and its three ﬂ, '.:
helping functions: Abstract-cases, Abstract-template-else, and Abstract-templates-else IR 4
which appear below: ﬁ:\'ﬁ‘\:ﬁ
)
(DEFUN Compile-case (case-exp) PRIy
(LET ((cases (Cases case-exp)) fnrsreiad]
(case-object (Case-object case-exp)) W
(var (New-variable))) .:'I.v‘\:h,u"::
(IF (Order-dependent cases) (Issue-warning-message)) OGN Y
(Combine (C-T-abs var (Abstract-cases cases var)) case-object))) Lo 2.
RN
(DEFUN Abstract-cases IR
(cases var &optional (already-seen-a-case NIL)) '_:'_-':-:.-:-'_::-:: .
(LET* ((first-case (CAR cases)) T
(rest-cases (CDR cases)) e
(template (Template first-case)) N
(result (Result first-case))) "t::,:‘j:::,
(IF (NULL rest-cases) ;; FIRST CASE IS ALSO THE LAST CASE -(?:N:\:
(Combine (Abstract-be template result already-seen-a-case) var) PRI
o4 (Abstract-template-else VlvabAt
template [ )
d result :5'_'_;&:_"; N
var :‘.-::’-Q_:":
2 (Abstract-cases rest-cases var T) RN
4 already-seen-a-case)))) -

W PV
f~f~.}\."‘ ~'~
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! TN N
¥ NN
o e
) u.,\f\’\"{u
y (DEFUN Abstract-template-else 'L_; N
(template result var else &optional (already-seen-a-case NIL)) o
WA (Combine RO ey
‘ (IF (Constructed-be-p template) ‘Q hRh R
',:' (LET ((constructor (Constructor template)) et ’
. (num-args (Num-args template))) B '::'.:0:
' (A-S-E-or-A-S-E'-comb RPTRI
already-seen-a, case S
'y constructor oA
> o N
: num-args é&g\': Gy
‘ (Abstract-templates-else v ::
X (Args template) X! N
- result i. L .81 .‘, 0
" var SN \!'\‘
D 1 X
:: else)
- else)
% . TEMPLATE IS A VARIABLE, SO NO NEED FOR ELSE
4 (C-T-abs template result))
N var))
.
) ' (DEFUN Abstract-templates-else
'y (templates result var arg-number else)
e (IF (NULL templates)
- result
. (Abstract-template-else
. (CAR templates)
L~ (Abstract-templates-else
! (CDR templates)
X result
>, var
; (ADD1 arg-number)
; else) i N
R (Combine (Combine 'ARG arg-number) var) -_;:-":-:.-:'_f-‘ ‘
else))) A
) ®
Note that if the piece of code: AN
ot . DA
o (Combine (C-T-abs var (Abstract-cases cases var)) case-object)) AONEITARR
v . . . . '.\':'. RS _~.')'-
A in Compile-case was replaced with: ._:.:_-.:_:;_;:“:-
> (Abstract-cases cases case-object) s e
: then CASE-exps would not be fully lazy. In situations where case-object is an unknown \
' containing variables — e.g. (+ 1 ?x) — more than one redex may be created and o~
' reduced, violating the property of full-laziness LNF enjoys. -:' o
¥ o
Two concrete CASE-exps and their compiled equivalents follow. The CASE-exp: >
;’:
4 »
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Compiled code of the CASE-exp above
Figure 3.8
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Compiled code of the CASE-exp above
Figure 3.9

3.3.6. Compiler Summary

It has been shown how each type of LNF expression may be transformed into a simple
LNF expression and how simple LNF expressions may be transformed into representa-
tions of LNF-wfls. In essence, the transformation’s task (except for some minor bits of
desugaring) is the elimination of bound variables in favor of LNF-wffs. The next section
will detail the mechanisms which transform these LNF-wff representations into lazy-
normal form.

3.4. LNF’s Runtime Environment

Since a compiled LNF program is not a fixed sequence of instructions to a Von Neumann

style machine but is a representation of an LNF-wff — 1e a graph in which program
and data are indistinguishable: running such a program will involve manipulating LNF-
wifs.

LNF’s runtime system (implemented by the routine LNF-of-wff and its subsidiaries) 1s a
realization of the machine called LNF-M in Chapter 2 Recall that LNF-M, given an
LNF-wff X as input, either terminates. vielding an LNF-wif LNFX such that X LNF-
red* LNFX and LNFX in lazv-normal form. or Jdoes not terminate. in which case X
has no lazy-normal form

LNF-of-wfl has a simple yet tiexible organization 1t 1s composed of two collections of
routines. One collection is responsible for controlling the reduction of an LNF-wff 1.
lazy-normal form and the other collection 5 responsible for performing the individual
reduction steps. The routines which control the reduction are independent of the
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system’s set of functors — they could also he used (as is) in a realization of the SKI-G- )
calculus. The routines which perform the individual reduction steps are mutually o
independent and functor specific -—— there 15 one routine per functor. The functor ALY

specific routine for functor f (called f-reducc) 1s. 1n essence, an encoding of f's LNF- e
calculus reduction rules and is responsible for reducing (if reducible} a wiff having f as its :":: :
initial atom. This organization facilitates experimentation with different functor sets, as fan

functors may be added to (removed from) the system by simply adding (removing) func-
tor specific routines — no code need be modified.

Although far from being a specification for a piece of hardware, the implementation is
quite machine-like. That 1s to say the routines themselves are written in an imperative
and ‘referentially opaque’ style. The machine-like structure of the runtime system’s
implementation was determined in part by a plan to move the implementation {or some
successor of it) c.t of software and into firmware and maybe even to hardware.

All of the significant routines making up LNF’s runtime system and the data structures

which they employ will now be discussed in detail. The routines which control the
reduction (which are the top level routines in the runtime system) are discussed first.

3.4.1. Controlling the Reduction

0 ol
The routines controlling the reduction of an LNF-wfl employ a stack: the items in the 200
stack are stacks (called left ancestor stacks) themselves. A left ancesfor stack (LAS) is ~_.;.,.-

the key data structure used in D A. Turner’s implementation of SASL — outlined in ,;-:.-
[Turner 1979¢c]. An LAS, used in conjunction with an expression graph (an LNF-wff), RS
eases access to the LNF-wff’s initial atom und arguments. The bottom item of such a -::::‘,’(::_';
stack points at the root of the LNF-wfl. Each of the stack’'s other items points at the Qf:v‘:f-‘:f
operator of the LNF-wfl pointed at by the item just below 1it. An LAS representation is T e

called canonical if its top item is the LNF-wfl's initial atom. RN

3

RoGT N
BoTTOM: | RO

- =~ + x

An Example of a (Non-canonical) Left Ancestor Stack ';
Figure 3.10 N

[t 1s convenient to display the LASs growimyg downward, since the trees (LNF-wils) they v s
represent are customarily pictured with root at top and leaves at the bottom. LY
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s One can see that a canonical LAS facilitates access to the LNF-wff’s initial atom and
/ arguments. If an LAS is realized by an array (as 1s done in this implementation) the
D LNF-wf’s initial atom and arguments may be accessed in constant time.
The next example illustrates the other property of LASs — no canonical LAS item
- points to a forwarding vertex. The top item of a non-canonical LAS may point to a for-
! warding vertex. It will be seen that the functor specific routines access the LNF-wff’s
o arguments via a canonical LAS. The fact that the LAS’s items are never forwarding ver-
y tices ensures that these routines will have to handle only “real” LNF-wffs — i.e. combi-
nations and atoms.
- [
f-l LNF: (P )
’ ~ —
g | S
3 K. )
i LNF:|P i \.J\.__:..:"\.J_k
. AL Al
¢ S ~
! AN
' LNF:'P K \J"f\n'\f\ '
) ‘.-f'-f\":f-' q
2 AL LN
4 ®
- , : ; STl
- Stack Items Do Not Point at Forwarding Vertices NG BASASY,
. Figure 3.12 BN
) ‘.\"ﬁ* -"\
. _'-F\l‘ .‘f .‘f N
g [t was stated above that the runtime system employed a stack of LLASs. Briefly, the PO SN
stack of LASs is used to locate the next redex to be reduced. The bottom item is the ®
; LAS representing the whole LNF-wff. If this LNF-wfl is a reduction context for argu- N,

ment 1, then the next item will be the LAS representing the LNF-wff’s ith argument
The top LAS represents the LNF-wfl on which the system is currently focusing its atten-
tion. An example follows:
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A Stack of LASs representing: + (X (addl 3) 7) (+ 2 2)
Figure 3.13

In the discussions to follow, the stack of LASs will be referred to as simply the stack; its
items (which are also stacks) will be referred to as the LASs. The ZetaLisp code which
realizes this system, starting with the code for LNF-of-wff, will now be presented.

;; Returns as value the lazy-normal form of wff (if one exists).
;; Assumes nothing about current state of the stack.
(DEFUN LNF-of-wf (wff)

;; First, clear the stack.

(Clear-stack)

;; Then, reduce the wil to lazy-normal form and return it.

(LNF-of-subwff wfl))

. Returns the lazy-normal form of wfl, leaves the stack unchanged.
(DEFUN LNF-of-subwff (wff)

;; ¥ind the wil’s lazy normal form,

. leaving its LAS representation as the stack’s top element.
(Stack-of-LNF-of-subwfl wil)

;; Pop the top (canonical) LAS off of the stack,

;> then return that LAS’s bottom element as result.

(Pop-stack))

;; Reduces wfl to lazy-normal form and

;; places its canonical LAS representation on top of stack.

;; It is called for these side effects only.

(DEFUN Stack-of-LNF-of-subwff (wff)
;; Push (non-canonical) LAS representation of wff on stack.
(Push-stack wff)
;; Reduce wff represented in top LAS to lazy-normal form.
;; Leave canonical LAS representation of it on top.
(Reduce-stack-to-LNF))

The following function is “the execution cycle’ of the runtime system.
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:; Assumes a non-canonical LAS on top of stack.
:; Reduces the LNF-wff it’s representing to lazy-normal form,
;; leaving the canonical LAS of this reduced LNF-wff on top.
. Called for these side effects only.
(DEFUN Reduce-stack-to-LNF 1
(LOOP ;; is exited when (RETURN) is evaluated.

;; Canonicalize top LAS on stack.

(Canonicalize-stack)

;; Attempt to reduce initial redex.

;; This may involve reducing some arguments first.

;; If no initial reduction performed or reduction makes

:» LNF-wff irreducible, then return.

(LET ((reduction-code (Attempt-initial-reduction)))

(IF (OR (Reduction-not-performed reduction-code)
(LNF-wff-now-irreducible reduction-code))
(RETURN)))))

;; Assumes stack is not empty. Canonicalizes the top
. LAS. Called for its side effect on the LAS only.
(DEFUN Canonicalize-stack ()
. (LET ((top-wff (Top-wil-on-top-LAS)))
: (LOOP WHILE (NOT (Atom-p top-wfl))
., top-wff is either a combination or
;; a forwarding vertex
(IF (Combination-p top-wff)
;; Assign top-wff to be its own operator
;; Push top-wff onto the top of the LAS
(Push-top-LAS (SETQ top-wff (Operator top-wff)))
;; Otherwise, top-wfl is a forwarding vertex, so
;; Assign top-wil to be the LNF-wff to which it was
! ;; forwarded. Overwrite LAS’s top item with new top-wff.
- (Replace-LAS-top (SETQ top-wff (Forwarded-to top-wff)))))))

A step by step example of LAS canonicalization follows.

ToP-wWFF:
—— LNF 1P ‘
—

- S

ILMFZ el K |

Just After Initialization
Figure 3.14
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The decision
[ts job

will not be

way. and the system does not claim to terminate for LNF-wfls having no lazy-normal

form.

23 is Attempt-initial-reduction.
p

ved

Figure 3.186
Figure 3.17

After One Trip Through the Loop
Figure 3.15
Top LAS has been Canonicalized

After Two Trips Through the Loop

23 The very low level routines like Replace-LAS-top. Push-stack. Push-top-LAS,

displayed

to leave the check out was made because such LNF-wfls have no lazy-normal form any-
The one remaining control roitine to be displa

Observe that there is no ‘‘loop check™ in the routine Canonicalize-stack. Thus, an

LNF-wfl having a cyclic “left spine” will cause the system to run forever.

,

wAS &
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:.{::"'\.\:,
is to try to perform a single initial reduction on the LNF-wff (represented by the top :.;.-..',.\:.:,;-,_‘,
LAS). To do this it is sometimes necessary to perform some internal reductions first. ® o 4».‘
These internal reductions are performed if and only if the LNF-wff’s initial atom 15 a AT
strict (or partially strict — strict for just some of its arguments) functor. ::&::t::::t ‘
WTATR
. TR !
.. Assumes canonical LAS on top of stack ARG
. ) L AR
. Returns a code informing caller whether or Lot an initial \.’\:}; oY,
v
AN

;; reduction was performed. If one was performed. the code
;; informs the caller whether or not the reduction has made the
;; LNF-wfl irreducible.
(DEFUN Attempt-initial-reduction ()
(LET* ((initial-atom (Top-of-top-LAS))
:: Initial-atom is a constructor or a functor.
o It i1s a functor iff there is a reduction routine
.; for it on its property list.
{(functor-specific-reduction-routine
(GET initial-atom 'LNF:REDUCER)))
;; functor-specific-reduction-routine is either NIL,
. in which case initial-atom is a constructor, or
;; 1t 1s the routine responsible for reducing
:; LNF-wffs having initial-atom as their initial atom.
(IF (AND functor-specific-reduction-routine
., initial-atom is a functor
(< (GET initial-atom 'LNF:ARITY)
(Number-args-in-top-LAS))
;; there are enough arguments to form a redex

- then run the routine! A e _'.
- It will return a reduction code. F:;:Qi:f:-'f’::-_:
(FUNCALL functor-specific-reduction-routine) RN AN,
.. Otherwise, LNF-wff is a construction or ESANAEALERS
. function so its already in lazv-normal form. A ®
:; Return “‘no reduction performed’ code. ;_';::ﬁ
*NO-RED*))) NI
NN
N A
This completes the discussion of the runtime system’s control routines. The next section NSRS O5
details several of the functor specific reduction routines. Also presented in the next sec- e
tion will be a detailed example illustrating the workings of the system. ‘,:':_:.r':-
AR
ROOSANa
3.4.2. The Functor Specific Reduction Routines _f._:;:;t
L] @
As stated above, there is one reduction routine for each functor. The reduction routine :-:::{:;(f‘_-:::
for functor f (f-reduce) expects the top item of the stack to be a canonical LAS repesen- NN
tation of an LNF-wfl of the {orm: >

fX, - X, where n >ARITY[f]

n:

For example, the routine S-reduce expects the stack to look like (recall the functor S has
arity 3):
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Possible State of System When S-reduce Begins
Figure 3.18
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The code for the S-reduce routine follows.

SXYZ—-XZ(YZ)
(DEFUN S-reduce ()
(LET* ((redex (LAS-item-4))
(x (LAS-arg-1))
(v (LAS-arg-2))
(z (LAS-arg-3))
;; create the new combination X Z
(xz (Combine x z))
;; create the new combination Y Z
(yz (Combine y z)))
;; Overwrite the operator and operand of redex with
;; xz and yz respectively.
(Replace-operator-and-operand redex xz xy)
;; Overwrite item which used to contain Sxy with xz.
(Replace-LAS-item-3 xz)
;; Overwrite item which used to contain Sx with x.
(Replace-LAS-item-2 x)
;; Pop the functor S from LAS.
(Pop-LAS)
o ;; Return the S reduction code.

g *RTP-5*))

v ;; Overwrites comb’s operator and operand with newopr and
v ;; newopd, respectively. Called for its side effect only.

. (DEFUN Replace-operator-and-operand (comb newopr newopd)
- (RPLACD (RPLACA comb newopr) newopd))

pt A minor point — in S-reduce, the two LAS stack overwrite operations and the popping
of the LAS may be replaced with the simpler: (Pop-n-items-from-LAS 3) since the next
call on Canonicalize-stack will perform these overwritings. The overwriting is performed
in S-reduce just because the system knows it will have to be done soon and since it has
the wffs in hand, why not do it? A graphical representation of S-reduce’s operation fol-
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‘“space cost” to each of the reduction routines

The code for the K-

created. The space cost of S-reduce is therefore equal to two.
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s toX

(LAS-arg-1)

;; then pop the LAS twice, then
;; replaces its top item with wif

)

.- return the K reduction code

*RTP-K*)

2

;; Forwards comb to wif and pops top LAS n times.

;; Called for its side effects only.

AR A BN AR NN
_T---h--\ l-! > .Tf\--\.\ . e
oy oy %y PN WAL A NN
E.f‘.,'-u---- v AT
¥ ..11--1\-& R AN N
PR A X N AR X AR AN
V...- N u-\ -\..- St et --.>.. -

> » » o . hl
EASRTEIEAONL - F\f\l\f\;..l PN

(DEFUN Forward-combination (comb wff &optional n)

fnf?ﬁ- A- . 7. A ;v)---th...
0.7 AN, Q_T\a..x.f...u.......« °

_......x.....,.\,......... AR AT ISR

¢ -.‘-..)...p ..f. .r. .ﬂ ---r.-r—fa-l .“( mu

X A NS

. q....f\--—.- -\ ..- -\ -. . . - An-nlf i!- nfitt”-ll.

(Pop-n-items-from-LAS n)

(Replace-operator-and-operand comb 'LNF:IP wff)
(Replace-LAS-top wff)))

(COND (n ;; n is NIL if not provided as argument

)
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The Workings of K-reduce 3;- v
Figure 3.20 ’
Observe that, following the K reduction, LAS’s top item is X and not the forwarding 8
vertex which points at X. This is another case of a reduction routine doing a job that n
Canonicalize-stack would have to do later. K-reduce’s space cost 1s zero The W-reduce N
and Y-reduce routines are presented next. .
A ~
s T WXY—-XYY ::
T (DEFUN W-reduce () =
Y (LET* ((redex (LAS-item-3)) R
3 (x (LAS-arg-1)) .
v (y (LAS-arg-2)) '
. - Create the new combination XY
. (xy (Combine x y))) NN
;' ;; Overwrite redex’s operator with xy \ﬁ‘-f
Wil Y
R (Replace-operator redex xy) e
) ;; Overwrite item that used to contain Wx with xy AN
) (Replace-LAS-item-2 xy) )
* ;; Overwrite item that used to contain W with x -
',; (Replace-LAS-top x) 5
' ;; Return W reduction code. b
b *RTP-W*))
S YX X (X (X)) EPT.
N (DEFUN Y-reduce () ‘-‘:i:':-w&
o (LET* ((redex (LAS-item-2)) N
N aro. R
: (x (LAS-arg-2) SRS
.. ;; Overwrite redex’s operator with x and operand with Oty Go%
) ;; 1tself! I
- (Replace-operator-and-operand redex x redex) SR
oy ;; Overwrite item which used to contain Y with x. '-:«'::_-"_
L (Replace-LAS-top x) :z.‘_:-..\_-\'.-:‘_'
- ;; Return Y reduction code. -::'_-'_:j::’\-:'.::
“ *RTP'Y*)) I' « . -..
& | N . | R
‘" The W-reduce routine costs one combinat:on while the Y-reduce routine costs nothing at NN
A all to run. PG ATALN
* vy
) A2 o)
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The rest of the routines specific to non-strict functors (B, C, 8’ B’. ) are implemented
in a similar fashion. Some reduction routines which deal with strict functors will now be
detailed. The first to be presented is X-reduce.
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X nm=—nXxXm
3 X RDUY - xIMRY
X nRDU — X n IMR
(DEFUN X-reduce ()
(LET ((redex (LAS-item-3))
(x (LNF-of-subwfl (LAS-arg-1))))
(IF (NUMBERP x) ;; THEN
(LET ((y (LNF-of-subwff (LAS-arg-2))))
(COND ((NUMBERP y)
(Forward-combination
redex ;; to 2V
(X xy) e o
;; Pop the LAS twice, then s
;; replaces its top item with (X x y).
2)
. Return code which informs caller that
; X reduction was performed and LNF-wff
., now irreducible.
(Irreducible-code *RTP- X *))
(‘T :: y’s lazy-normal form is not a number, so
.. return “no reduction performed” code.
*NO-RED*)))
- ELSE x’s lazy-normal form not a number, so
., return ‘‘no reduction performed” code.

*NO-RED*)))

‘l

P

The above routine requires some explanation. It purports to be an encoding of the three
reduction rules for multiplication (the three comment lines just preceding the code).
Where are these rules in the code? Before answering this question, there is an obvious
but (pragmatically) important point to be made concerning reduction contexts in the
LNF-calculus. If X is a reducible f reduction context for argument i and X LNF-imr Y
(Y is just like X except that ARG[i,X] has been reduced to ARG[i,Y]) and ARGIi,Y]
reducible, then Y is an f reduction context for argument i. For example, the LNF-wff on
the left in the following figure is a X reduction context for argument one. The LNF-wff
on the right (the reductum of the LNF-wff on the left) is also a X reduction context for
argument one.
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) . . . . AW Tl R )
, Because reduction contexts are preserved in this way X-reduce may reduce its LNF-wf’s ‘.- '..l'::l":'.::l
first argument all the way to lazy-normal form (via LNF-of-subwf?4 ), rather than just .‘:::'":..'a ‘,n;:.':‘
performing a single reduction on it (as its first contextual reduction rule specifies). After ’ ".'u‘k.."‘u‘.u‘
the first argument has been reduced, it is time to check and see if it reduced to a ,, ,(., :
number. If it did, then the LNF-wff is now a reduction context for the second argument. ‘® °

The routine proceeds to reduce the second argument to lazy-normal form (again via O AN
LNF-of-subwff). If the second argument is a number, then X’s substantive reduction ‘:»,:';;:'v':t
: rule may be applied. AR
.r._.*:ﬁ:-r:f"
Thus X'’s first contextual rule is endcoded in the routine’s third line: Nl
L d L J
(x (LNF-of-subwfl (LAS-arg-1)))) ";::.:-;'-’_"
AT
and X'’s second contextual rule is hidden in lines four and five: .:_’:‘;ﬁ:,:'r
D {l' -.'. o *
(IF (NUMBERP x) ;; THEN :2;\::)“:"
(LET ((y (LNF-of-subwfl (LAS-arg-2)))). PAMEATAY A
Its only substantive reduction rule is realized by the two nested predications (NUM- :.-}‘-P":\?‘

BERP x) and (NUMBERP y) and the call on the function Forward-combination which
forwards the redex to the product of x and y.

e
":'Jf}:,";
LKA
"-1. g fn’
e

SN YA,
All of the routines which deal with strict functors follow a reduction sequence similar to ::\:\:::ﬁ:'::-:
that followed by X-reduce. First the routine finds the appropriate argument to reduce ® Ly
(determined by the functor’s contextual reduction rules). That argument is reduced to :::'::E"jﬁia
lazy-normal form. If the reduction of that argument creates a reduction context for ::;:-'::& ‘.“
another argument, then that argument is reduced. When all of the functor’'s contextual e A
reduction rules have been applied, then the routine tries to apply a substantive reduc- N
: NN
tion rule. o
SRR

Enough reduction rules have been presented now to enable a not totally trivial example
of LNF-wff reduction to be given. The LNF-wff to be reduced in this example is:

W X (+12)
which is the LNF-wff to which the LNF-exp:

24 The routine LNF-of-wff may not be used since it resets the stack of LASs before beginning
Recall that LNF-of-subwff does not disturb the stack
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(AN (?n) (X %0 n)) (+12)

compiles.
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After Canonicalization

Figure 3.25

After W Reduction
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Figure 3.28
X
Figure 3.29
<
.

X

LNF-of-subwff has not vet popped off the sum.

X
In the Middle of X-reduce, Just After + Reduction.

In the Middle of X-reduce, Just Before + Reduction
In the Middle of X-reduce, Just After LNF-of-subwfl Returns

f

The routine +-reduce is identical to X-reduce except for the expressions (X x y) and

*RTP- X * which are replaced with (+ x y) and *RTP-~+*, respectively.
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Still Inside X-reduce. Just After second Call on LNF-of-subwfl Returns
Figure 3.30

f".';

222,

P
P

x5,

X

S
L
£
v
>
® sy

LNEP [ q

Far s
3,4,
L
S-S

PR
R RETRR A
LAY
R A L E XS

3

After X-reduce Returns
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The significant aspects of LNF’s runtime system have been presented. There are, of
course, many more reduction routines; but their similarity to the routines just detailed
obviates the need to present them here. It has been shown, mainly in pictures, that run-
ning an LNF program is nothing more than reducing an LNF-wfl to lazy-normal form S
via the reduction rules of the LNF-calculus.
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3.5. Displaying the Results

The function Display accepts LNF-wfls in lazy-normal form and displays their lineariza-

tion on the screen. The user may elect to see the results of a computation (the reduced

LNF-wff) in one of three formats:

e Lazy-normal Form — arguments of constructions and functions remain unreduced
(the default)

e Normal Form — no redexes remain in the result

e Normal Form of Members — instead of a list’s members being displayed surrounded
by square brackets and separated by commas, just the (normal form of) each member
is displayed

The user selects the display mode of choice by entering a directive (via the mouse). The
system responds by changing its prompt (for the next LNf expression to be compiled,
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3 R
> . ) ALY
¢ reduced, and displayed) to either: v'..:-""~':$:
e LNF of — (for lazy-normal form), evng

e NF of — (for normal form), or
e NF of Members of — (for normal form of members).

An example illustrates the effect the display mode has on the result. Suppose the LNF
program to be run is:

TL [1,(+ 1 2),.,1,(x 2 2)].
In lazy-normal form mode the result displayed is:

(+12),,1,(x22)],

in normal form mode the result displayed is:

[3Y')1)4]) o .
o - ‘u."‘ .
and if the display mode is normal form of members, the following result is displayed: ::.::::;{:{:'
NN,
3.14. ...‘:_,:._:,.:
:'f\ A CNEN
. o ) ®
Display prints the normal form of an LNF-wff by, upon receiving an LNF-wfl: RGN
aX; X, in lazy-normal form, first printing a, then (recursively) calling (Display :::‘\-’:-}:
(LNF-of-wff X)) for each i, 1<1i <n. Thus, even for LNF-wffs which have no normal TN
form, some output may be generated. :-::::.:-‘: .
BRNEO G 8
Observe that the display routine ensugars lists before displaying them — 1e. [1,2,3] is Yo ’,
displayed rather than PAIR 1 (PAIR 2 (PAIR 3 [])). The display routine also knows ’:f:;:-‘::f
about one other type of construction- the line. A line is construction of the form: ;.::.‘.ﬁf.t:
LA 7 P
LINE (VEC x4 yo) (VEC x, ). f:f;'.l*.-"'

X
55
,.l'

Lines are displayed by drawing the line from point <IXxg,ys> to <x,,y;>> on the screen.

) L
If in normal form of members mode, a picture may be represented by a list of lines. A :_J_'\-'\-S.;f
functional geometry program has been implemented in LNF and is displayed in Appen- ::»:f-:.r::‘
dix C. The program is capable of creating an M.C. Escher print (following [Hender- RHARSLY
son 1982]) and producing ‘fractalized” pictures from existing pictures. The beauty of :-:-:_:-’::'_:
these programs is that the drawings are not side effects but normal-forms of their (very '_‘:-.\a:‘f\\.-_
high level) description! L
N
The routine Display is also capable of printing cyclic LNF-wfls of any kind. When N NN
. ) X ) y ) ety
displaying a non-list and Display encounters a cycle, it gives the LNF-wfl (whose root 1t SN
. > ey ) . SRt
" has seen before) a name and prints the name instead of the LNF-wfl. When displaying a »_ﬁ-\.',-».'f'“:: y
/ list, however, a name is not ascribed to the LNF-wff until the LNF-wff is seen for the ;‘ > “."‘
' third time, thus giving the user a better feeling for structure. AT AN
RN
AT A
For example, the LNF-expression: S {:"
AR AN
?x whererec [?xe?y] = [[1?y]e[20¢?x]] ::',:::E:,'::’,:
which has the lazy-normal form: A
.. -h
PAIR 1 (ARG 2 (APP-TO-ARGS 2 (B (C' PAIR (PAIR 1)) (PAIR 2)) ...) NV
QRGN
is displayed (when in lazy-normal form mode) as: = \‘f\'{;»"
::'w: \J.'-
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s

S %
b

{Ie(ARG 2 (APP-TO-ARGS 2 (B (C’ PAIR (PAIR 1)) (PAIR 2)) E2023))
but when in normal-form mode, is displayed as:

[1,2,1,20 P4825).
The names E2023 (E for Expression) and P4825 (P for Pair) are the system given names
to the cyclic structures.
Functions and unknowns as well as constructions are displayed. A displayed function is
just its linearized compiled code. For example, the squaring function:

XA (?n) (X ?n ?n)
1s displayed as:

W x.

Unknowns are displayed, simply, as linearized LNF-wfls.

3.6. Summary

LNF’s experimental implementation has been described in fairly fine detail in this
chapter. Special emphasis was placed on the compiler and the runtime system. The
user interface to the system was only hinted at. Appendix D contains a recorded LNF
session to give interested readers a feel for what it’s like to interact with LNF.

Chapter 4 contains brief reviews of other work in this area, some comments on the rela-
tionship between this work and the author’s, and some of the author’s plans for the
future of LNF.
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Chapter 4
Summary, Related Work, and Future Plans
The author’s work — having been detailed in chapters 1. 2. and 3 — is now summar-

ized. In the secticn which summarizes LNF's implementation, brief discussions of other
researchers’ alternate approaches to compilation and runtime system organization are in-
terspersed. Some of the author’s plans for the future of the LNF language and its imple-
mentation have also been integrated into this synopsis.

4.1. Formal Aspects

Chapters 1 and 2 discuss the formal underpinnings of the LNF language. The content of
these chapters is summarized in this section.

Following the presentation of two of the more famous reduction calculi: the X-calculus
([Church 1941]) and the SKl-calculus ([Schonfinkel 1924]), the new concept of lazy-
normal form ts defined. The concept of lazy-normal form in the SKl-calculus is related
to C.P. Wadsworth’s concept of head-normal form ([Wadsworth 1971]) in the \-calculus
It 1s demonstrated (see Thecrem 1.8) that an SKI-wfl in lazv-normal form is an “‘nutline”
of the wif's normal form (if 1t exists) — i.e. its normal form will have the same initiai
atom and the zame number of arguments. Theoren 1.8 also implies that an SKI-wil's
normal form may be arrived at by first finding the wil's lazv-normal form and then
appiving this procedure recarsivelv (o its arguments. The implementation makes heavy
5o of both of these Aindings

The ideas vehind M Schonfinkel's SKI-oalenlus, C P Wadsworth's graph enented a-G-
caleulus ([Wadsworth 1971]), and D A Turner’s SASL mnplementation ([Turaer 1975

are combtued with the ~oncept of lazv-normal forms to produce 2 new detesmnistie ome
binator based graph and machine oriented reduction calonlus the SKE-G-calevlas This
caleulus 15 equivalent in power to the N-caleulus et ol Fat s much more directly and
efficiently miplementable. This 1s due primandly to the structure sharing properties of
the SKI-G-wifs. Both garbage nodes and forwarding arcs (indirection polnters), concepts
that are usually relegated to a calculus’ implementation, are given formal detinitions in
this calculus.

|
!
|
|
!
»
|
l

.a‘..", .l'""‘;’.'.."-".'f-‘f‘)‘h'f""f.f.f-f..f'I""'-F"J".".' L ’J' L4 'I'f.f.-"‘ -"If
Ry .'!."h by e , ";‘{’-'f";"l-".-’-“’"l’ Du)l.’:-_ﬁ-..:" f:'ﬂ:f?'*:‘#.’:ﬁ;,f P, R J'\ :v \'.\ "6‘\,‘\,
" }'P'\I-)‘l'-q,-'-".*‘.~}v}iﬂl v ‘Vf'- d'h{'\ v
¢ PGSR LN ! D AR

'f

o AT N ~
A

. w 1]
I" l' ‘,
IR
INveARy
I\ )

[

.

+
|=

L .fll"

h's
‘1’
?

b ST I

»y

L2 %S
z
s

<
hJ
‘1'

7

17 o TS T Y r
!'.f.::‘:(.'{,'l,f? ®
1 222 P LSS,
A,
A
e
% Y

=3 J
.

Lt

..
7
r
a

-
o L
/'

o

¥ B 3 e g
-’l."fx"\ ~ @
i » LI |
g

",[./
x's

"
LY

LS
L}

2
-

.

[
@

I“'l'-

> oL

1 4
',
L ]

5

P

b

LY \{\ N
SN A
RO _\:'_\‘:
BEACNCACNG
RESALENE
NN
BN I R I
RO S
NLNL _"\'b
@ ®
"T L I
RAEARS
AR
N HJ‘\

) \‘,\
faias

"‘\"\
WA



. - o oy . - Ty " . vy -
S W D T R R O W W W VTV T Vs A S AR Sl Pl Sl el Pl S Al AL St A DA A A

-
)
T

o W
- AR
' AT
' Page 128 ®e @
! TR,
P: The SKI-G-calculus still, however, is an inefficient model for a functional programming r::}‘:::r:;"
language’s runtime system for the following two reasons. Translating (closed) A-wfls into :::‘_:\','\'.\f.‘-
SKI-G-wfls (via a modified Schonfinkel abstraction algorithm) creates graphs of unac- ':(\.‘:_::::\.:\
ceptable size. Also, since the SIKI-G-caiculus is pure (i.e. free of numeric constants, ‘a"" "-5.‘"
numeric operators, conditional expressions, etc.), these familiar programming constructs '_-!‘.:-‘f'_.:i‘:q"‘
k must be represented in the calculus. The first problem is solved by using 2 different _-._‘*'\\Q.\,\ﬁ\
. abstraction algorithm — one which produces much smaller SKI-G-wffs. This algorithm Yoy >
y

is based on the work presented in [Curry 1958], [Turner 1979a), and [Turner 1984a]. To
solve the representation problem, new functors are defined (via new reduction rules) and
a new type of atom is introduced: the constructor. The resulting calculus is called the
LNF-calculus. It is this calculus upon which LNF’s runtime system is based.

R R e e

4.2. LNF’s Implementation . o
. . : : o . e °

The LNF language and its experimental implementation are detailed in Chapter 3. This ST A

section summarizes that implementation, discusses alternate methods for compiling and l‘-'\::\:'-:.:::

. . ) . AT AT Y

running functional programs, and presents some {uture plans for the implementation. ﬁ}-,:_\-':\:\:,
” e,

RGNS

T

4.2.1. Compilation

The LNF language is a superset of the language of linearized LNF-wffs. In addition to
the constructions, functions, and unknowns (linearized LNF-wfls, also called simple
expressions) which are built from the atomic expressions via combination, the LNF
language includes: lambda expressions, expressions having auxiliary declarations, list
expressions, and conditional expressions. Lambda expressions may have bound expres-

R OO ERTYTYTw w o

sions as formal parameters. Functions may be defined via order independent equations ‘_‘-::"‘.‘-:.‘-..\:~
anywhere declarations are permitted. List expressions include both of the high level 32"{{:':::::-’.'
expression types which were introduced in D.A. Turner’s KRC language ([Turner 1982a] NSRS
. . . ., . - N ‘.y\ 5 N
and [Turner 1982b]): arithmetic sequences and ZF Expressions. Conditional expressions NN
include case expressions having order independent cases. All LNF expressions have sim- e o
ple LNF expression (linearized LNF-wfl) equivalents. The LNF compiler automates the RSN
i . . : : RERCEA (N
transformation of LNF expressions into simple expressions for the user. ‘.::\:5:\ o
\";:":{:::::
The compiler’s main job is the elimination of bound expressions in favor of variable-free ".;.r';:-k::af.:
expressions. It accomplishes this via a generalized abstraction algorithm which, at its ': " ;"'
core, contains the Schonfinkel-Curry-Turner-Scheevel abstraction  algorithm A
([Turner 1984a]). Other FP language implementation projects which base their compiler o ‘4-:?;“\: '
on this abstraction algorithm include: D.A. Turner’s SASL and Miranda languages :";,:‘_’}n‘_’;-.__:., )
([Turner 1979¢], [Turner 1984a], and [Turner 1984b]), Cambridge University’s SKIM J\_-';:;‘_:'_-;\f_
processor and its successor SKIM II ([Clarke 1980] and [Stoye 1984]), Burroughs YA
Corporation’s ARC-SASL language ([Richards 1984]), and Yale University’s ALFL e 8
language ([Hudak 1984a}, [Hudak 1984b], and [Hudak 1984c]). ﬁ:::::::.:‘:
RN
Two similar FP language compilation algorithms, both different from the Schonfinkel et f.:-:\';'_':
al. algorithm, are presented next. The first was developed by the Programming Metho- :‘,'-:.;-:'jxj':'_-_.
dology Group at Chalmers University for the language Lazy ML ([Augustsson 1984a], ‘." s ; -
[Augustsson 1984b], [Johnsson 1984],  [Kieburtz 1984), [Johnsson 1983],  and KA
[Johnsson 1981b]) and is called “lambda lifting”. The other compilation algorithm was NN
NN
TN
..4.-J.‘* A’
oA
h!' - L) ‘!
T AT e e e T T AT L T T At ot T AT AT AT AT A "N . SRRl \':.:':::- :’:.':.\"
At Y, C NN S I AN O i\‘:\'_ AT AT SRR OO N
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‘ .
devised at Oxford University by R.JM. Hughes ([Hughes 1982a] and [Hughes 1982b])
and is called “compilation via super-combinatcrs’™ Both algorithms translate closed
expressions involving abstractions. LET. and LETREC expressions into a set of reduec-
Y tion rules {each of which is independentiyv compilable to a fixed program ana defines a
b combinator to be used to reduce this one program) and an expression built up
\ exclusively from atoms (constants and these tailored combinators) via combination.
1
The basic 1dea behind the lambda hfting and super-combinator approaches is ro lift out
, to the outermost level all abstractions inside an expression. However, only closed
A abstractions may be ‘“‘moved outside” without modification. For example, 1t is clear that
3 the expression:
A add1 ((» x (* x x)) 30),
containing an interior closed abstraction. is equivalent to the expression:
" (M f (add1 (f 30))) (A x (* x x))
::' containing no interior abstractions. The second expression may be viewed as the (single-
Y ton) set of reduction rules: {f x = * xx} and the abstraction-free combination:

J (add1 (f 30)). Before abstractions containing free variables may be “moved outside”
they must be “closed up”. This process of closing up such abstractions is where the two
o methods (lambda lifting and super-combinators} part ways. The lambda lifting approach

W closes up an abstraction containing free occurrence(s) of a variable v by passing v to it
- as argument and also adding v as a formal parameter. For example, the abstraction:

>

. Ay (+ xx),
w containing free occurrences of the variable x becomes the combination (containing onlyv a
3 closed abstraction):

- ) 4

: O x(\y (5 x ) x

y The super-combinator approach specifies that the abstraction:
o Ny (4 xx)
v be transformed to this combination:
“altd
y (As(Nys)) (+xx)

u The difference, in general, is the following. Lambda lifting always abstracts away vari-
- ables (the minimal (ree expressions) from the abstraction. The super-combinator
« approach abstracts away the maximal free expressions {rom the abstraction. Recall from
. Chapter 1 (in the discussion of Wadsworth’s X\-G-calculus) that, sometimes, before some
; 3contractions could be performed, some parts of the operator (the abstraction) had to
o be copied. The parts that did not have to be copied were the abstraction’s maximal free
expressions. Arvind, in [Arvind 1984], points out that. in essence. Hughes' super-

Y combinator abstraction algorithm 1s doing at compile time what Wadsworth's interpreter
. 15 doing at run time. The super-combinator compilation algorithm. by mov. ¢ constant
o expressions outside of the bodies of abstractions. achieves full laziness. The lambda lift-
- ing approach is merely lazy.

After lambda lifting (or compilation to super-combinators), code must be generated from
the set of reduction rules and the abstraction-free combination. Each reduction rule is
compiled separately into a fixed program closely resembling the (hand-coded) functor
specific reduction routines in the LNF runtime system. The abstraction-free
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combination is then reduced, in a runtime svstem organized along similar lines as LNF’s,
with the compiled reduction rules plaving the part of the LNF’s functor specific reduc-
tion routines.

A

4.2.2. The Runtime System

LNF’s runtime system makes use of left ancestor stacks and hand-coded functor specific
reduction routines. D.A. Turner’'s SASL and L. Augustsson’s and T. Johnsson’s Lazy
ML projects both employ similar organizations. The SKIM, SKIM II, Miranda, and
ARC-SASL projects use a scheme called “‘pointer reversal” in place of left ancestor
stacks — in which the pointers along the left spine of the wif are reversed as they are
encountered. Using the ‘“pointer reversal’”’ technique, the space taken up by the left
ancestor stack is saved as this method requires only two registers — one to point to the
wfl’s initial atom and one to point at the chain of reversed pointers. See the example
below for a comparison of the two representations.

a4

> -y >
a2

[4

o]

i
25
5
A

o
Left Ancestor Stack and Pointer Reversal Representations .

~ Figure 4.1

o s
:\ D.A. Turner credits, in [Turner 1984a], himself, A. Norman (SKIM and SKIM II), and ::{._ \-'\
o M. Scheevel (ARC-SASL) with independently discovering this method. The author plans ::.‘_:-::-_'_':
':-:. an experimental LNF implementation which uses pointer reversal in order to compare its .-‘_{:-:'.:-:.‘{'
o performance with the left ancestor stack representation method. "-."-"-;"-
:::: The SKIM II runtime system performs some time and spuce saving optimizations. one of - .:::Ej:_'::
e which has already been incorporated into the LNF svstem. After comparing two struc- \:.
- tures for equality (reducing a wff of the form: = X Y) and finding them equal, SKIM II's P
::‘_: runtime system forwards one expression to the other. The two henefits arising from this oS
! operation are: (1) the cost of comparing the two wifs i the future will be minimal. and

o (2) many portions of the forwarded wiff may become muccessible and therefore eligible for

o reclamation. LNF's runtime system has borrowed this idea and put it to use. SKINM II's
-';\ compiler, as mentioned above, 1s based on the Schénfinkel-Curry-Turner-Scheevel

:r: abstraction algorithm. Thus, the code 1t produces 1s similar to that produced by the

s LNF compiler — i.e LNF-wffs. The SIKIM Il anplementors have added an extra field to
- the data structures which represent their graphs -- w one bit reference count. The bit 1s

"’j_- turned on if more than one pointer points at the node -- i.e. the node is shared. They \:.-.f.\‘_’,:
7 ManR
“n DN
" ;-.',v,-?;:.
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employ this bit when reducing, for example, an S redex. In LNF, recall, an S redex is
reduced as follows.

An LNF S Reduction
Figure 4.2

Observe that it requires two new combination cells (labeled n, and n,) be allocated.
The purpose of the one bit reference count is to avoid, whenever possible, allocating new
cells. For example, if the node labeled 2 is not being shared before the reduction, then
after the reduction this cell would be inaccessible — i.e. garbage. Instead of returning it
to the heap at garbage collection time, the idea is to use it as one of the two required
cells of the S reduction. If the node labeled 3 is also not being shared, then it could be
used as the other “new” cell. An example of SKIM II S reduction follows.

A SKIM II S Reduction
Figure 4.3

In the above example all of the reference count bits are off. W.R. Stoye claims, in
[Stoye 1984], “The results of applying this technique are spectacular — on average.
about seventy percent of wasted cells are immediately reclaimed’. It is planned that a
future version of LNF will make use of this space saving scheme.

Other plans for the future of the LNF implementation include experimentation with:
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the need for runtime type checking now present in many functor specific reduction

routines.

relaxing the rather artificial restrictions on the reduction rules defining functors like
Py Iy
:jrl"".r

+ and X which make them deterministic
.*-\.'-.
o)
s

(1) to detect errors at compile time instead of waiting until runtime, and (2) to avoid

ments in parallel
e
i
¥,

o
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o
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e type inference ([Milner 1978], [Hindley 1969], [Damas 1982}, and [Coppo 1980]), so as
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NUMBERP CFN — FALSE, if CEN not a number

€3]

)

=

&=

! £
= 7
a., [«
e 1
mE g
M [+}
)

Z. +
e +
&

)

@

>

o

.
-f--ﬁl..- q‘. .*“’I ‘Il‘ll




“) - -_h » * y X .V\uﬁ.—w S .

.l'.ﬁ A .‘-\l -NA-NJ.!\ o A\un —. !# “ wa -’ °® -nf -.). a.-.-’--uf.‘k -.- 1\ . \ Pd ~r

P S \\......bu. oA o R By =

. \ -n\ nn\.w n-?.-n RAW .\\ A

z “‘M ‘n“! n- nn lu .n'-N-.r-N.:.N-M- .h.—ﬂr\ lﬂ\mﬁ ‘ \ 3

: KA W "

LAY P .... X \.. ':0 A.“Mn&. ot of S AT e c&JV..NV.N\.w O?

lu

“ o

A . /IL ﬂ

3 = E

E: m m o

: E m

4 b= - I T

; I . e % a9

- B9 g T 48 As
= 3 4 ¥d88 =L T4

s . O oo &8 oh

2 g g w § 999 54 5% 7
e o L 2338 g« &< g

p m_ ﬂ = R e s ﬂ e B i

: &

3 1 e .q g .ﬁ .ﬁ w o 1T 11 o

P £ g - o 8 2Z2am EE EE 5

3 a S 2 = WN wm ae &8/ 2
= = m

: x % a8 8 & mE m H VYV OAA <

x oz 2 2 Vv AN
; a a Zg m 2

Page 134

n=>0

-1
BOOLEANP b — TRUE
BOOLEANP CFN — FALSE, if CEN not a boolean

SUB1 n —
ZEROP n —

SUB1
ZEROP
BOOLEANP

NOT NOT TRUE — FALSE
NOT FALSE — TRUE
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PAIRP CFN — FALSE. if CFN not a pair

NULLP CFN — FALSE. if CEN
PAIRP (PAIR X Y) — TRUE

NULLP (] — TRUE

NULLP
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l"~

B, NTH NTH1(PAIRXY)—X

R NTH i (PAIRX Y) — NTH i1 Y, if i>1

. APPEND APPEND [][] —[]

n APPEND []P — P

'q APPEND (PAIR X Y) Z — PAIR X (APPEND Y 2)

: INTERLEAVE INTERLEAVE [|P — P

o INTERLEAVEP {[] — P

e INTERLEAVE (PAIRX Y) P —

) PAIR X (INTERLEAVE P Y)

b~

- FLATMAP FLATMAP X [] — []

FLATMAP X (PAIRY Z) —

; INTERLEAVE (X Y) (FLATMAP X 2Z)

oy ENUMERATE ENUMERATE X — TURN [] X

)

a TURN TURNX[]—UPX[][]

. TURNX (PAIRY Z) - UGP (PAIRY X) [] Z

P

:2 UP UP[]XY—-DOWNXI[]Y

> UP(PAIR[]X)YZ—-UPXYZ

= UP (PAIR (PAIR X, X,) Y)W Z —

r PAIR X, (UP Y (PAIR X, W) Z) °
N SRS
[ DOWN  DOWN [][][]— ] SIS
" DOWN [} P [] = UP P []] AAGALA
b DOWN (PAIR (PAIR X, X,) Y)Z W — RN
PAIR X, (DOWN Y (PAIR X, Z) W) AN,

DOWN [] X (PAIR []Y) — TURNX Y o

» DOWN [] X (PAIR (PAIR Y, Y,) Z) — s
- PAIR Y, (TURN (PAIR Y, X) Z) 3

s Y

oy MAP MAP X []—[] WO
- MAP X (PAIRY Z) — PAIR (X Y) (MAP X Z) e
P "‘.-,‘.r,;.r.;.r
N MEMBER MEMBER [] X — FALSE RSV
b MEMBER (PAIR X Y) Z — SN
o IF (= X Z) TRUE (MEMBER Y Z) ey
N RO
) COLLECT COLLECT[]XY —-Y @
- COLLECT (PAIRX Y)W Z — RN
W X (COLLECT Y W Z) RGINNRY
ol P NEN
RN A
- FILTER FILTER X [] — [] S

' FILTER X (PAIRY Z) — e ~'."

" IF (X Y) (PAIR Y (FILTER X Z)) (FILTER X 2Z) .
e B
] REM-DUPS  REM-DUPS X — REM-DUPS' X [] N
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REM-DUPS'

FB

FB'

FBT

FBT'

IF

UNKNOWNP

FUNCTIONP

FUNCTOR

REM-DUPS' [| X — X
REM-DUPS' (PAIR X Y) Z — IF (MEMBER Z X)
(REM-DUPS' Y Z) (PAIR X (REM-DUPS' Y Z))

FB n m — PAIR n (FB' ntm m), if mz£0
FBnm — PAIR n (PAIR n ...}, if m=0

FB' n m — PAIR n (FB' n+m m)

FBT n m o — PAIR n (FBT' n+m m o),

if (m>0 and n<o) or (m<0 and n>>0)
FBTnmo — [],

if (m>0 and n>o) or {(m<0 and n<o)
FBT n m o — PAIR n (PAIR n ..}, if m=0

FBT' n m o — PAIR n (FBT' n+m m o),
if (m>0 and n<o) or (m<0 and n>>o0)
FBT' nmo — [],

if (m>0 and n>o) or (m<0 and |ngo)
YX—-XXX..)

= cf} cfy — cf;=cf,
= CFN, CFN; —
AND (= (OPERATOR CFN,) (OPERATOR CFN,))
(= (OPERAND CFN,) (OPERAND CFN,))

L ¢f CFN — TRUE, if NUM-ARGS[CFN] >0
L CFN cf — FALSE, if NUM-ARGS[CFN]>0

L cf; efy —
cf, lexicographically less than cf,
L CFN; CFN, —
OR (L {(OPERATOR CFN,) (OPERATOR CFN,))
(AND
(= (OPERATOR CFN,) (OPERATOR CFN,))
(L (OPERAND CFN,) (OPERAND CFN,))),
if CEN, and CFN. are both combinations

IFTRUEXY — X
IFFALSEXY - Y

UNKNOWNP CFN — FALSE
UNKNOWNP IRU — TRUE

FUNCTIONP FN — TRUE
FUNCTIONP CN — FALSE

FUNCTOR FN — INITIAL-ATOM[FN]

h 2 T 3
"
2
h]
%

.

L4

LRI

P

<
S
5
‘s,
&’N:-&'.

(
~ 0

L
(¥4

b
.'4'1

«
a

Y 'I;{ﬁl p
AT

L)
{l‘.."l
e .

!
»_E_®

'l.'f,l
MM

(3

™ A
’
*\Sfﬂ::\:‘ \

PR YRS




CONSTRUCTIONP

CONSTRUCTOR

ARITY

NUM-ARGS

ARG

ATOMP

COMBINATIONP

OPERATOR
OPERAND

A-S-E

A-S-E'

APP-TO-ARGS
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CONSTRUCTIONP CN — TRUE
CONSTRUCTIONP FN — FALSE
CONSTRUCTOR ¢ X, X, —c

ARITY FN —
ARITY[INITIAL-ATOM[EN] - NUM-ARGSFN]

NUM-ARGS CFN — NUM-ARGS[CFN]

ARG i CFN — ARG[i,CFN]
il I<I<NUM-ARGS[CEN]

ATOMP CFN — NUM-ARGS[CFN]=0

COMBINATIONP CFN — NUM-ARGS[CFN] >0

OPERATOR CFN — OPERATOR[CFN]

OPERAND CFN — OPERAND[CFN]

A-S-EeciX Y (e Z
ASEc,iXY (. Z)"

if ¢;7%¢, or 1]
ASEc¢ciXYFN—~-Y

Z,)—-X
Z,)—Y.

A-S-E' ¢iXY(cZ,  Z,))—X

ASE ¢iXY(c;Z, - Z;)~—
if e17£e, or 1]

AS-E' ¢ciXYFN-~Y

Y.

ASciX(cZ, - Z,)—X2Z, - Z

AYciX(eZ, Z2,)—XZ,  Z

3

APP-TO-ARGS i1 XY — X (ARG 1Y) (ARG 1Y)

A.2. Contextual Reduction Rules

NUMBERP

NUMBERP RDU — NUMBERP IMR
~-RDUY — - IMRY
-n RDU — - n IMR

~ RDUY —- » IMR Y
x n RDU — % n IMR
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™ o
=
M_I
—
Z >
2R
[
oll=)
fa)
=+
(o ]
2 2,
[ale]
2,
A

IDIVRDU Y — IDIVIMR Y
IDIV i RDU — IDIV i IMR

IDIV

INI

REM REMRDUY — REMIMRY
REM n RDU — REM n IMR

ANy
.
WA
¥ P ) "
b
LNCYC Y I Ju
PAC A A ]

[ S S F AR )

EXPRDUY — EXPIMRY
EXP n RDU — EXP n IMR

EXP

’.
e @

<RDUY - < IMRY
< RDU IMR

< n RDU —

<

- IMRY
n IMR

> nRDU — -

> RDUY —

>

ADD1 RDU — ADDI1 IMR

ADD1

SUBI RDU — SUB1 IMR

SUBI1

ZEROP RDU — ZEROP IMR

ZEROP

m
o
z.
<
&)
[un)
Q
o
@
!
&)
A
a4
o9
Z.
<
&
[
Q
@)
@

BOOLEANP

NOT NOT RDU — NOT IMR

OR OR FALSE RDU — OR FALSE IMR

ORRDUY - ORIMRY

AND TRUE RDU — AND TRUE IMR
AND RDUY — ANDIMR Y

AND

HD RDU — HD IMR

HD

TL RDU — TL IMR

TL

NULLP RDU — NULLP IMR

NULLP

PAIRP RDU — PAIRP IMR

PAIRP

NTH i RDU — NTH i IMR, if -0

NTHRDUY — NTHIMR Y

NTH
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APPEND RDUY — APPEND IMR Y

APPEND




INTERLEAVE

FLATMAP FLATMAP X RDU — FLATMAP X IMR
TURN TURN X RDU — TURN X IMR
UP UP (PAIRRDUX)Y Z — UP(PAIRIMR X, Y Z
tPRDUY Z —-1UPIMRY Z
DOWN DOWN []RDU [] — DOWN []IMR []
DOWN [] Y RDU — DOWN [] Y IMR
DOWN [] Y (PAIR RDU W) —
DOWN [] Y (PAIR IMR W)
DOWN (PAIRRDUX)Y Z —
DOWN (PAIRIMR X} Y Z
DOWNRDUY Z - DOWNIMR Y Z
MAP MAP X RDU — MAP X IMR
MEMBER MEMBER RDU Y — MEMBERIMR Y
COLLECT COLLECTRDUY Z — COLLECTIMR Y Z
FILTER FILTER X RDU — FILTER X IMR
REM-DUPS’ REM-DUPS' RDU Y — REM-DUPY IMR Y
FB FBRDUY - FBIMR Y
FBn RDU — FB n IMR
FBT FBTRDUYZ —-FBTIMRY Z
FBT n RDU Z — FBT n IMR Z
FB8T nm RDU — FBT n m IMR
= =RDUY -=IMRY
= CFN RDU — CFN IMR
L LRDUY -LIMRY
L CFN RDU — L. CFN IMR
[F IFRDUXY —-IFIMRXY
UNKNOWNP  UNKNOWNP RDU — UNKNOWNP IMR
FUNCTIONP FUNCTIONP RDU — FUNCTIONP IMR
FUNCTOR  FUNCTOR RDU — FUNCTOR IMR
CONSTRUCTIONP  CONSTRUCTIONP RDU — CONSTRUCTIONP IMR
A R e e i -
J\*"l Nﬁ G 'tl\rs'\.'\ ‘:-" 0 m D) \f‘*‘.‘.\. :-‘.'-"'-5"\‘:- .,‘(h.‘.."‘. ‘.“‘“.‘. ) -,"‘"':. WY

INTERLEAVE RDU Y — INTERLEAVE IMR Y
INTERLEAVE P RDU — INTERLEAVE P IMR
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Appendix B

BNF-like Description of LNF Expressions

Sprinkled throughout the formal description of the language are examples of well-formed
LNF-exps. The description makes use of the following conventions:

o UPPERCASE names denote syntactic categories.
e The symbol U denotes category union.

e Lowercase names are concrete syntax.

e < ..> denotes an optional item.

e < ..>* denotes 0 or more items.

e < ..>71 denotes 1 or more items.

LNF-EXP ::= SIMPLE-EXP U LAMBDA-EXP U
WITH-AUX-DECL-EXP U LIST-EXP U CONDITIONAL-EXP

SIMPLE-EXP ::= ATOM U COMBINATION U (LNF-EXP)
ATOM = CONSTRUCTOR Uy FUNCTOR U VARIABLE
CONSTRUCTOR ::= ZETALISP-SYMBOL
COMBINATION ::= LNF-EXP LNF-EXP

All VARIABLE occurrences must be bound occurrences
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EXAMPLES: (of SIMPLE expressions)

30882736

(((23)))

flat-Tire

pair 2 4

Sfg

(if TRUE then 4 3)

+ 4934732984

X (minus 2432) (- box bag)
LAMBDA-EXP ::= X (<BE>*) LNF-EXP
BE ::= VARIABLE U CONSTRUCTED-BE
VARIABLE ::= NAMED-VARIABLE U ANONYMOUS-VARIABLE
NAMED-VARIABLE ::= ?ZETALISP-SYMBOL
ANONYMOUS-VARIABLE ::=?

CONSTRUCTED-BE ::= CONSTRUCTOR <BE>* U LIST-BE
LIST-BE ::= [ ] U [BE<,BE>*< «BE ]

The list of formal parameters may contain only one occurrence of any one (non
anonymous) variable.

EXAMPLES: (of LAMBDA expressions)

A (?x) (+ ?x ?x)
N ([?x*?] ?p) (or (?p ?x) (or-list (map ?p ?y)))
X ((ds ?f1 22 ?f3)) (?3 (+ ?f1 ?02))

X (0) 1

Rt A A
LT LA AR Rt R R A SIS
Lot '».5.-.’-' L e

WA TRLY
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SR ENAN, (RS
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ke S
o WITH-AUX-DECL-EXP ::= WHERE-EXP U WHEREREC-EXP U WHERE*-EXP SN
WHERE-EXP ::= LNF-EXP where DECLARATION <& DECLARATION>* '-'5 5'»"_‘;;
N WHEREREC-EXP ::= LNF-EXP whererec DECLARATION <& DECLARATION >~ AT o
e WHERE*-EXP ::= LNF-EXP where* DECLARATION <. DECLARATION >~ e
o DECLARATION ::= SIMPLE-DECLARATION © FUNCTION-DECLARATION AT
3 SIMPLE-DECLARATION ::= VARIABLE - LNP-EXP J (CONSTRUCTED-BE] = LNF-ENP  -3e¥Aveys
R FUNCTION-DECLARATION ::= FUNCTION-EON _ EQUATION-SET RN
’ FUNCTION-EQN 1= ZETALISP-ATOM - BE >~ = LNP-EXP ) e
EQUATION-SET = {FUNCTION-EQN . « FUNCTION-EQN =7} RSN
e, Tt
-:- N
b Each FUNCTION-EQN in the set must be neaded by the same ZETALISP-ATOM «'}:?_-:1}'_1::
$ nian
" EXAMPLES: (of WHERE, WHEREREC, 1na WHERLE " expressions) " - .,.
N NS
) 0 . Y oA
- {—7x ?y) where 7x = 3 & %y = | \-:,,:_j:.;
:. ) 2 LI, LI e .:':.::;:J:::
& ’p1 whererec ?pl = [1¢?p2] & ?p2 = [2¢°pl] ;,::.-_-;:_j:_::
[.- (X ?x ?y) where* ?x = 3 ; %y = (factorial ?x) .'. .\
2 _.:, .' e
::: (thrice double 5) where RSO
o thrice ?f 7x = ?f (?f (’f 7x)) & YRR
double ?x = X 2 ?%x ROU AN
) ®
7 (+ ?x ?y) where (tree ?x ? 7y) = some-tree -‘.'\\::i:
. :t(f-::;(ff
o (factorial 10) whererec -::'.-‘_::'::.-::-""
- factorial ?n = (if (zerop ?n) then 1 SN
. else (X ?n (factorial (subl ?n1)) o ‘:“
o P AN
L, (app [1,2,3] list) whererec _’.:_i:,;:"
b {app [] %z = "z | NN
k. app [?xe?r] 72 = [’xe(app ’r 7z)]} ":':'i"*
B
| °
’ LIST-EXP ::= EXPLICIT-LIST-EXP U ARITH-SEQ-EXP u IMPLICIT-LIST-EXP BRIy
b EXPLICIT-LIST-EXP = [] U [LNF-EXP " LNF-EXP = *< o« LNF-EXP =»] .
= ARITH-SEQ-EXP ::== [LNF-EXP < LNF-EXP > .« LNF-EXP ]
- IMPLICIT-LIST-EXP = FOR-EACH-EXP U TURNER-LIST-EXP
' TURNER-LIST-EXP := [LNF-EXP!GENERATOR < < ;GUARD > < GENERATOR .. -7}
~ FOR-EACH-EXP ::= for-each GENERATOR FOR-EACH-CLAUSE .
- FOR-EACH-CLAUSE ::= and-for-each GENERATOR FOR-EACH-CLAUSE U VN
- such-that GUARD FOR-EACH-CLAUSE U o
- instantiate LNF-EXP e
i~ GUARD ::= LNF-EXP Lot
. GENERATOR ::= BEELNF-EXP _‘mO
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and-for-each ?y€[100,101]

instantiate (X 10 ?x)
instantiate [?x?y]

such-that (odd ?x)

- ?2x %y
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(1,2,3,4,5]
[flat,2,tire,1023]
[a,b,ced]

[1, .,1000]

(= 10 2pxelt, )
for-each 7x€([1,.]
fer-each ?x€[1,..,5]

(10.10..]

2,4,

(13. ]
0.-1. ]

EXAMPLES: (of LIST expressions)
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[?e?rest] — (addl (len ?rest)) |

(] -0

case (leaves big-tree) in
endcase

if (odd num) 2 3

if (odd num) then 23

if (odd num) 2 else 3

if (odd num? the:. 2 else 3
case a-tree in

EXAMPLES: (of CONDITIONAL expressions)
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;. Returns absolute value of x
(define (abs ?x) (if (< O ?x) ?x (minus ?x)})

;;; Returns n+m modulo mod
(define (plus-mod ?mod ?n ?m)
(rem (+ ?n ?m) ?mod))

i
:

;;; Places first element of nonempty list at the rear.
(define (rotate [?xe?r])
]

(append ?r [?x]))

..; Exchanges first and second elements of a list.
(define (exchange [°x1,?x2e?r])
[?x2,?x17%r])

(define (reverse [?xe?r])
(if (nullp ?r)
then [?x]
else (append (reverse ’r) [’x])))

C.2. Closing Up “‘Sets” Under Laws

)
]
}
:
.;; Reverses a nonempty list.
l
:
|
:

o These next three definitions are LNF versions of functions
.. written by D.A. Turner. They appear in [Turner 1981a].

: ., Returns a set (represented as a list w/o duplicates), which
.., is ?set closed up under the operations (LNF functions) in the
;o hist ?laws,
(define {closure-under-laws ?laws ?set)
(append ?set (closurel ?laws ?set ?set)))

ARl

o Returns the “‘set’ which is ?set2 closed under ?laws
. minus the ‘“‘set’” ?setl.
{define (closurel laws ?setl ?set2)
(closure?
*laws
’setl
.. mkset removes duplicate elements from a list
(mkset [?a | ’law € ?laws ;
?a € (map ?law ?set2)
‘ (not (member ?setl ?a))])))
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: ;7 Returns the “set’ which is ?set2 closed under ?laws ;{‘;:;‘.-; ‘
;;; minus the “‘set” ?setl. Ve
R (define (closure2 ?laws ?setl ?set2) x -‘.{_:,Q::'
‘ (if (nullp °set2) AT
l&J‘* * ()
e then [] A
::|. else (append R
:‘:d ?SetQ . ‘\. ‘T
(closurel ?laws (append ?setl ?set2) "set2)))) ) o _
; o \"\":n.!'. &
N . ) NN AN
N ;;; SOME INTERESTING SETS :._~‘,_-$._::§: )
e AN
N AR
'j: ;;; The Naturals modulo ?mod — defined as rhe set [0] closed ::.'_s::';:';
’ - under the “‘successor modulo mod™ function TRt ATeY
, N ) °
(define (naturals-modulo-n “mod) AN
¥ (closure-under-laws [plus-mod ’mod 1] [0}}) .r\-\:.\::
A ‘R“&;.-
S
X - The Naturals — the set [0] closed under the successor :-:.Vs <
PN
[ , AN
1 :; function. R
(define naturals . 0
(closure-under-laws [add1] {0])) ::Eﬁ:: Ny
RN
;;; The Integers — the set [0] closed under the successor and r'; -f'\\\t \
A ;;; predecessor functions. E\"‘: )
A (define integers-repl LRV A
(closure-under-laws [add1,subl] [0])) s -__.?_.
~ NSENR
2 ;;; The Integers (again) — the set [0] closed under the AR
R . ST AT
- ;;; predecessor and the absolute value functions. Yy \'__-.:_-.:’:
- (define integers-rep2 :::"::;:1:."
S (closure-under-laws [abs,subl] [0])) ‘ :
; e
-’C ;;; The even Integers — the set [0] closed under the ..’_x_:-.:'_-.:-.
' ;;; ““decrement by 2 and the absolute value functions. :;::—::{.\,-":'
o, (define even-integers :I::.f::' :‘;\
; (closure-under-laws [abs,(\ (°x) (- ?x 2))] [0])) RASANELAN
. o
1y ;i The powers of ?n — the set [1] closed under the ;.:’_x""'
;55 “multiply by ?n’’ function. "_:-" \;
3 (define (powers-of 7n) e
A y (closure-under-laws [* ?n] [1})) AN
- ;i A STRANGE set — the set [[0]] (whose only element is a set) 2"‘?‘"".’-'.‘
K~ ;;» closed under the function which closes sets under the :\'.::-{:};u"
:; . “successor modulo ?mod” function. ;::-:zf::
(define (higher-order-example-mod ?mod) .\_.‘S:.\ﬁ‘-
N NN
7 (closure-under-laws ARAENAN
[closure-under-laws [plus-mod ?mod 1}] °
N (o)) -
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A :;; The set of all permutations of ?list.
! (define (perms ?list)
(closure-under-laws [exchange,rotate reverse] [list]))

C.3. Geometric Sequences and Series

- Returns the geometric sequence [a,ax.ax”ax’ ...
[ (define (g-seq ?a ?x)
; (g-seq-from-n ?a ?x 0))
.- Returns the geometric sequence tail [ax" ,ax” AL
(define (g-seq-from-n ?a ?x ?n)
([(X ?a (exp ?x ?n))e(g-seq-from-n ?a ?x (addl ?n))]))

;> Returns the infinite series corresponding to the given
;;; infinite sequence.
(define (series [?xe?rest])

([?xeseries] [?xe?rest]]))

¥ ::» Helper function for series.
! (define (seriesl [?x1,”x2e?rest])
([?zeseriesl [?ze?rest]] where ?z = (+ ?x1 ?x2}))

.- Returns TRUE when applied to a convergent geometric series.
(define (convergent-g-series [?x1,?x2e?rest])

((and (< -1 7x) (< ?x 1))

where ?x = (div (- ?x2 ?x1) ?x1)}))

;> Returns the limit of a convergent geometric series.
(define (limit-g-series [?x1,7x2e?rest])

((div ?x1 (- ?x 1))

where ?x = (div (- 7x2 ?x1) ?x1)))

;;; Returns a pair [nex] where x is the nth element in
;.- the series and is the first element to be within epsilon of
-+ the series’ limit.
(define (first-close-to-limit ?series ?epsilon)
(first-close-to-limit1
?series
?epsilon
(limit-g-series ?series)

0))

;
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;1 Same as above except that the limit has already been
;;; determined and the first n elements are not within epsilon
;;; of the limit.
(define
(first-close-to-limit1 [?xn-+1e?rest] ?epsilon ?limit ’n)
((if (within-epsilon ?xn~+1 ?limit %epsilon)
then [?n-plus-onee?xn—+1]
else (first-close-to-limitl
’rest
?epsilon
?limit
’n-plus-one))
where ?n-plus-one = (add1 ?n})))

;;; Returns TRUE iff x1 is within epslion of x2.
(define (within-epsilon ?x1 ?x2 ?epsilon)
((< (?abs ?diff) ?epsilon)
where ?diff = (- ?x1 ?x2) &
?abs ?num = if (> ?num 0) ?num (minus ?num)))
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C.4. Functional Geometry
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An LNF implementation of Peter Henderson’s “Functional Geometry” ([Hender-
son 1982]) follows. There is one big difference between Henderson’s implementation and
the author’s. For Henderson, pictures are data structures, but in the LNF implementa-
tion, pictures are functions. A picture is a function, which when applied to three argu-
ments, each of which is a vector of the form: VEC x y, becomes a plottable picture. A
plottable picture is simply a list of plottable lines, each taking the form.
LINE (VEC x0 y0) (VEC x1 y1). LINE and VEC are contructors. The suite of funec-
tions which implements these ideas [ollows.
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o Vector addition.
{define (vec+vec (vec ?x0 ?y0) (vec ?x1 ?v1))
(vec (+ ?7x0 ?x1) (+ ?v0 ?y1)))
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;7 Scalar-vector multiplication.
(define (scalar*vec ?n (vec ?x ’y))
(vec (X ?n ?x) (X ?n ?y)))
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..; The Basic Functions:
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;;; Implements PH’s nil (the empty picture), i.e a function
;:; of arity 3 which, when applied, ignores its arguments and
;;; returns the empty list.

(define (empty-pic ? ? ?) [ ])
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., Implements PH’s: plot(grid(m,n . s),a-vec.b-vec c-vec)
. {grid m n segs) — picture
:.: (grid m n segs avec bvec cvec) — plottable-picture
..; NOTE: plot is unnecessary in this implementation.
(define (grid ?m ?n ?segments ?a-vec ?b-vec ?c-vec)
(for-each (segment ?x0 ?y0 ?x1 ?y1) in ?segments
instantiate
(line (vec+vec ?a-vec
(vec+vec (scalar*vec (div ?z0 ?m) ?b-vec)
(scalar*vec (div ?y0 ?n) ?c-vec)))
{vec+vec ?a-vec
(vec+vec (scalar*vec (div ?x1 ?m) ?b-vec)
(scalar*vec (div 7yl ?n) ?c-vec))))))

;;; Implements PH’s: plot(flip(p),a-vec,b-vec,c-vec)
., (flip picture) — picture
., (Aip picture avec bvec cvec) — plottable-picture
(define (flip ?pic ?a-vec ?b-vec ?c-vec)
(?pic (vec+vec ?a-vec ?b-vec)
(scalar*vec -1 ?b-vec)
%c-vec))

;;; Implements PH’s: plot(rot(p),a-vec,b-vec,c-vec)
.;; (rot picture) — picture
;;; (rot picture avec bvec cvec) — plottable-picture
(define (rot ?pic ?a-vec ?b-vec ?c-vec)
(?pic (vec+vec ?a-vec ?b-vec)
?c-vec
(scalar*vec -1 ?b-vec)))

;;; Implements PH’s: plot(overlay(p,q),a-vec,b-vec,c-vec)
;;; (overlay picture picture) — picture
;;; (overlay picture picture avec bvec cvec) — plottable-picture
(define (overlay ?picl ?pic2 ?a-vec ?b-vec ?c-vec)
(append (?picl ?a-vec ?b-vec ?c-vec)
(?pic2 ?a-vec ?b-vec ?c-vec)))

;;; Implements PH’s: plot(beside(m,n,p,q),a-vec,b-vec,c-vec)

;;; (beside n m picture picture) — picture

;;; (beside n m picture picture avec bvec cvec) —

;;; plottable-picture

(define (beside ?m ?n ?left-pic ?right-pic ?a-vec ?b-vec ?c-vec)

((append (?left-pic ?a-vec ?scaled-b-vec ?c-vec)
(?right-pic (vec+vec ?a-vec ?scaled-b-vec)

(scalar*vec (div ?n (+ ?m “n}) ?b-vec)
?c-vec))

where ?scaled-b-vec == (scalar*vec (div ?’m (+ ?m ?n)) ?b-vec})))
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[ ;;; Implements PH’s: plot(above(m,n,p,q),a-vec,b-vec,c-vec) :a::::';:-% :
s ;;; (above n m picture picture) — picture PAGLIA Y 72!
;;; (above n m picture picture avec bvec cvec) — plottable-picture :\{.\,
. (define (above ?m ?n ?top-pic ?bot-pic ?a-vec ?b-vec ?c-vec) Lo
; { ((append (?top-pic I
(vec+vec ?a-vec ?scaled-c-vec) E:::;:"
' ?b-vec Rosadiey
(scalar*vec (div ?m (+ ’m ?n)) %c-vec)) 7 e
: (?bot-pic ?a-vec ?b-vec ?scaled-c-vec)) RN
’ where ?scaled-c-vec = (scalar*vec (div >n (= ?m ?n}) c-vec))) :: '_\\,r-
: R
", , ;;; PH's quartet :ﬂs%j\'
‘oA ;;; (quartet picture picture picture picture) — picture o el
{define (quartet ?p1 ?p2 ?p3 ?p4) e
¢ (above 1 1 (beside 1 1 ?pl ?p2) (beside 1 1 *p3 ?p4))) ,.:':.f::,:::;::‘.:
0 I §'.“::ﬁ$:‘.:':.‘.§
B 0 's cycle 4
i 5 (cycle picture) — picture ~ "'.::?
I (define (cycle ?pic) ‘.‘ bl .‘ -
, ((quartet ?pic X N
Y (rot ?rot-rot-pic) -"1‘5"3-".» '
- ?rot-pi '\"'. "':""::“ ;
y ’rot-pic Iy
< ?rot-rot-pic)
o where* ?rot-pic = (rot ?pic) ;
, ?rot-rot-pic = (rot ?rot-pic)))
_.: ;;; Some Example Pictures From PH's Paper:
i ;:;; PH’s man
o (define man
) (grid 14 20
[segment 6 10 O 10, segment 0 10 0 12
N segment 0 12 6 12, segment 6 12 6 14,
! ) segment 6 14 4 16, segment 4 16 4 18,
~ segment 4 18 6 20, segment 6 20 8 20,
segment 8 20 10 18, segment 10 18 10 16.
: segment 10 16 8 14, segment 8 14 8 12,
< segment 8 12 10 12, segment 10 12 10 14,
., segment 10 14 12 14, segment 12 14 12 10,
"_ segment 12 10 8 10, segment 8 10 8 8,
~ segment 8 8 10 0, segment 100 8 0,
: segment 8 0 7 4, segment 7 4 6 0,
o segment 6 0 4 0, segment 4 0 6 8,
:: segment 6 8 6 10]))
%
: ;;; PH’s FatBoy
(define fatboy (above 1 1 empty-pic man))
)
)
)
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: .;; PH’s Boy
) (define boy (beside 1 1 fatboy empty-pic))

;;; Components Making up Escher Print:
;;» The next 6 pictures are the basic buiding blocks of the print.

:;; PH's p, figure 18 in paper
(define mce-p

(grid 36 36

[;; left eye

) segment 0 7 6 9, segment 6 9 0 18, segment 0 130 7,
' :: line between eyes
segment 13 09 9,
;; Tight eye
segment 9 12 9 23, segment 9 23 16 14, segment 16 14 9 12
;; side of head
segment 24 0 22 9, segment 22 9 18 18,
segment 18 18 9 30, segment 9 30 0 36,

;; top of tail T e
segment O 36 13 34, segment 13 34 18 36, o a A
segment 18 36 26 27, segment 26 27 36 27, ,’\-:'- X

;; line in tail ';:':

segment 18 27 36 23, o i
:; bottom of tail N

segment 18 18 27 21, segment 27 2] 36 18,
;; tiny line in upper right

BN o e g e am g ined

N
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” .
AP AN NN

{ segment 32 36 36 34, ':,:Ex":}‘:,f
:: next one down ',.‘_‘{,.:::.}.,:,

F segment 27 36 29 34, segment 29 34 36 32, 5 ’x‘;\'_ﬂt !
- and the next YA
segment 22 36 26 32, segment 26 32 36 29, gf\.___’_ﬁ,?\;.
;; first line below tail ::::\_] ::,::}:,
segment 20 14 27 16, segment 27 16 36 1. :_‘Eﬁx:‘:-:;
;; the next “:,-_;.,:,,-)‘ .{_\;
segment 22 9 29 11, segment 29 11 36 9. RCATNY.

;; and, finally, the last
segment 24 0 31 5, segment 31 5 36 3]))
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segment 18 34 25 34, segment 25 34 20 30,

segment 20 30 18 34,

;; right eye

segment i8 0 22 14, segment 22 14 22 20]))
>
o

segment 36 36 34 22, segment 34 22 36 18,
segment 36 18 29 9, segment 29 9 27 0,
segment 9 0 13 11, segment 13 11 13 186,
segment 14 O 18 13, segment 18 13 18 18,

segment 20 27 27 27, segment 27 27 22 23,
;; three lines to the right of the tail

segment 22 23 20 27,

segment 13 16 27 22, segment 27 22 36 36,
;; Tight side of tail

:; leftmost line above fish
segment 4 36 7 29,

segment 11 31 16 34, segment 16 34 18 36.
;; next one

- line 1n middle of fish
segment 0 23 16 25,

;; left edge
segment O 18 9 16, segment 9 16 13 16,

segment 29 0 36 14, segment 32 0 36 9,

segment 34 0 36 4,

;; line in tail
;; four lines left of tail (left to right)

segment 0 27 0 36, segment 0 0 0 18,
segment 5 0 9 11, segment 9 11 9 16,

segment 0 27 7 29, segment 7 29 11 31,
;; right side of fish

;; rightmost line above fish

segment 14 36 16 34,

;; left eye
segment 32 25 23 O,

segment 9 36 11 31,

WL
N

[;; left side of fish
v
I.

>
Yy

{grid 36 36
%
7.

;;; PH’s q, figure 19 in paper
v
e
b

OGO
(define mce-q
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i» PH’s r, figure 20 in paper .\i"-:x_';?;'-:s

(define mce-r NN

(grid 36 36 L

[;; top of fish ,}_:_..;:._: o
segment 24 36 27 28, segment 27 28 36 18, .;';,;}:_: el

;; bottom of fish _,,\-,\'5{:4. !
segment O 36 4 27, segment 4 27 10 22, g.'-\'\..'f:')' 7l

segment 10 22 17 18, segment 17 18 31 14, ;“" .
segment 31 14 36 9, PN M
;; line thru fish :N:NEQ'::.,
segment 13 36 25 23, segment 25 23 36 14, ::i::\:'\’&: !
;; lines above fish :'.:f:“.f:-'::gs

segment 27 28 36 36, segment 29 30 36 23, TR s

segment 31 32 36 28,segment 33 34 36 32, i ( ]

;; bottom semi-horizontal lines

segment 2 2 8 0, segment 4 4 18 0, segment 7 7 18 4,
segment 18 4 27 0, segment 10 11 27 7, segment 27 7 36 0,
;; lower diagonal lines

segment 0 0 17 18, segment 0 8 10 22,

segment 0 18 4 27, segment 0 27 2 32]))
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;;; PH’s s, figure 21 paper
(define mce-s
(grid 36 36

5 [

S 32
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[;; left fish

segment 18 36 16 30, segment 16 30 16 23,
segment 16 23 16 18, segment 16 18 18 14,
segment 18 14 23 9, segment 23 9 36 0,

;; line in fish

segment 23 36 25 23,

;; right fish

segment 27 36 30 30, segment 30 30 32 25,
segment 32 25 34 21, segment 34 21 36 18,
;; Tight eye

€,

nyy
e

segment 29 16 34 18, segment 34 18 34 11, i ..

segment 34 11 29 16, :::_::::4:‘
;; left eye NG INR

segment 22 14 27 16, segment 27 16 27 9, ;.::,-;-3-;:; )
segment 27 9 22 14, ~ :ﬂ:.r: y
;; lines right of fish = '.‘"
segment 30 30 36 32, segment 32 25 36 27,

segment 34 2T 36 22,
;; bottom hump

segment 0 0 9 5, segment 9 5 17 5, segment 17 5 36 0,

;; next up

segment O 9 4 2, segment 0 14 16 9,
segment O 18 18 14, segment 0 23 16 18,
segment O 28 16 23, segment 0 32 16 30,

;; top border lines

segment O 36 18 36, segment 27 36 36 36]))

5y PH’s ¢, figure 22 in paper
(define mce-t
(quartet mce-p mce-q mce-r mce-s))

;;; PH’s u, figure 23 in paper
(define mce-u
(eycle (rot mce-q)))

;; The remaining functions are used to combine the basic building
;;; blocks into the Escher print.

(define sidel
(quartet empty-pic empty-pic (rot mce-t) mce-t))

(define side2
(quartet sidel sidel (rot mce-t) mce-t))

(define cornerl
(quartet empty-pic empty-pic empty-pic mce-u))
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side?2
?rot-mce-t
" pictures.

(rot side2) &
(rot mce-t}))

mce-u
2 J—

(beside 1 2 ?pT (beside 1 1 *p& °p9)))))
side2

(beside 1 2 ?p4 (beside 1 1 ?p3 ?p6))

(beside 1 2 ?pl (beside 1 1 ?p2 ?p3))

{above 11

’rot-side2 ?rot-mce-t (rot mce-q))
’rot-mce-t

?rot-side2

corner2
at the LNF prompt “NF of Members " produces the Escher print.

quartet cornerl sidel (rot sidel) mce-u))

(quartet corner2 side2 (rot side2) (rot mce-t)))
where ?rot-side

define pseudolimit
(cycle pseudocorner))
(above 1 2

define corner

((nonet

(cycle corner))

(

(define pseudocorner
;;; Entering “‘squarelimit (vec 50 50) (vec 500 0) (vec 0 500)”

;;» Given a natural number n, a fractal-function. and a picture,

;;; the next function applies the [ractal-function n times to

(define (nonet ?pl ?p2 ?p3 ?p4 ?p5 ?pb ?p7 ?p8 *p9)

;7 The functions below “fractalize

Page 158
{(define corner2
(define squarelimit

(
(

producing a fractalized picture.
(fractalize ?n ?fractal-fn ?pic ?a-vec ?b-vec ?c-vec)

((if (zerop ?n)

;; lines)
then ?plottable-picture
else (fractalizel

AR

(

;;; the picture (actually, it is applied to each of the picture’s
define

(?pic ?a-vec ?b-vec ?c-vec)))

(flatmap °fractal-fn ?plottable-picture)))

fractal-fn

(subl ?n)
where ?plottable-picture
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fractal-fn

(fatmap ?fractal-fn ?plottable-pic))))
(define (fractal-fn-1 (line (vec ?x0 ?y0) (vec ?x1 ?y1)))

;;; A not so terrible fractal function.

((make-lines

......
v e

[(vec ?x0 ?y0),

(vec

(+ 70 (X 13 ?sum))
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(+ (+ ?x0 (X 13 ?height)) (X 23 ?length))

(- ?y1 (X 13 ?sum))),

(vec ?x1 ?y1)])
where* ?length = (- ?x1 ?x0) ;
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S e Y T AR
.\-.-.q-.m..‘.\.‘.g S o
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?height = (- ?y1 ?y0) ;

O AR

rf..\' .f --w Sl

(+ ?length ?height)))

?sum

;;; Connects the vectors, making a plottable picture.
[(line ?v1 ?v2)e

(define (make-lines [?v1,?v2e?vecs])

then []
else (make-lines [?v2e?vecs]))])

(if (nullp ?vecs)
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Appendix D

Sample LNF Session
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Included in this appendix is a recorded session with the LNF system. User input has
been boldfaced. Recall that LNF prompts with either “LNF of ”, “NF of ”, and “NF
of Members of ” when it is expecting an LNF expression. In addition, LNF prompts o
with “Definition: ” when the user signals the system (with the mouse) that he wishes to
input a symbol definition.

-y
i

L g gt 4
7,

Sometimes, following the printing of the reduced expression, some statistics on the
reduction are displayed. These statistics inform the user:

e the number of reductions performed,

o the number of user defined symbols looked up (expanded),

e the time it took (in seconds) to reduce the expression,

e the reduction rate (expressed in reductions per second),

e the size of the result (remember that shared wffs cannot be detected by looking at
linearized LNF-wffs),

e some space and stack statistics, and

a breakdown of the reduction, showing which functors were employed in the reduc-
tion.

For brevity, these statistics are not displayed for all of the reductions. In some cases.
only some of the statistics are printed. Two reductions were selected for detailed moni-
toring. For these two reductions, each step of their reduction sequence is displayed.
The session follows.

LNF of (A (?x) (+ ?x ?x)) 4 is
8

s :?:\;F\.x.}-\-;’\ P e N R S N
" N0 S AN Y L U Ch E N A C S R RIS a ~
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X RS LI LA Lo B AR N S 50 L
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LNF of append [1,2,3] [4,5,8] is
[1+APPEND |[2,3] [4,5,6]]

NF of append [1,2,3] [4,5,8] is

(1,2,3,4,5,6]

NF of Members of append [1,2,3] [4,5,8] is

123456

Definition: (define (thrice f ?x) (?f (?f (?f ?x))))
THRICE defined, combinators introduced: 4.

NF of thrice is

S B (W B)

Definition: (define (double ?x) (+ ?x ?x))
DOUBLE defined, combinators introduced: 1.

NF of double is

W+

NF of double 3 is

6

NF of double kevin is
+ KEVIN KEVIN

NF of thrice double 3 is

24

NF of thrice double kevin is
+ (+ (+ KEVIN KEVIN) (+ KEVIN KEVIN))
(+ (+ KEVIN KEVIN) (+ KEVIN KEVIN))
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LNF of thrice thrice double 3 1s
402653184

Reductions : 90

Symbols Expanded: 31

Elapsed Time : 0.059689 secs
Reduction Rate : 1507.82 RPS
Size of result : 1

NFof + (?2 3) (’g 4)
where ?g = (f (X 2 2)

where ™ ?x Py = (+ {X ’x ’x} (X ?x ?y))) Is

Initial Expression

S+ (R3)(R4)(R(x 22)(S (B B~ (W X)) x)

Steps: 1  Combs: 43 Last Comb: &/
~(R3(R(Xx 22)(S(B' B+ (W x} x}i
(R4(R(x 22)(S(B'" B~ (W Xt xJi

Steps: 2 Combs: 43 Last Comb: R
~(R(x22)(S(B' B+ (W X)) x}3)
(R4(R(X 22)(S(B' B~ (W x)) x)n
Steps: 3 Combs: 43 Last Comb: R
- (S(B'"B+ (W X)) x {x 22)3)
(R4(S(B'"B+ (W X)) X (X 22)))
Steps: 4 Combs: 45 Last Comb: S
~(B"B+ (W X)(x 22)(x (X 22))3)
(R4(B"B+ (W X)(x 22)(x (x 22
Steps: 5 Combs: 47 Last Comb: B’
~ B+ (WX (x22))(x{x22)3)
(R 4(B(+ (W x (x 22)))(x (x 22}
Steps: 6 Combs: 48 Last Comb: B
+(+ (WX (x22)(x(x22)3)
(R4 (B(+ (W X (x22)(x (X 22)))
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Steps: 7 Combs: 49 Last Comb: W A _,}‘,,'_:,u\ n
+{+(X(Xx22)(x22)(x(x22)3) i“m};{‘ﬂ
(R4(Bé(+t()><(>< 32)(525)))(X(X22)))) ® o
Steps: 8 ombs: 49 Last Comb: X R AR W
+ (+ (x (IP 4) (IP 4)) (X (IP 4) 3)) E’:—_?.;ﬁ:'l‘;"
! (R 4 (B (+ (X (IP 4) (IP 4))) (X (IP 4)))) iy
! Steps: 9 Combs: 49 Last Comb: X “ﬁ:":‘:‘ta
~ (+ (IP 16) (x (IP 4) 3)) Sy
(R 4 (B (+ (IP 16)) (x (IP 4)))) e .9
! Steps: 10 Combs: 49 Last Comb: X :Ei::ég:
: + (+ (IP 16) (IP 12)) ;;ﬁ-\-::,::: -
. (R 4 (B (+ (IP 16)) (x (IP 4)))) :::;N';/:."@';-.
[ Steps: 11  Combs: 49 Last Comb: + PG
+ (IP 28) (R 4 (B (+ (IP 16)) (X (IP 4)))) o ” ‘.
Steps: 12 Combs: 49 Last Comb: R RTRINR
¥ + (IP 28) (B (+ (IP 16)) (X (IP 4)) 4) o
Steps: 13 Combs: 50 Last Comb: B "

b 4
P~
é:;‘;v
o
L% :

! + (IP 28) (+ (IP 16) (x (IP 4) 4)) F*J':\:J}:JQJ‘
Steps: 14 Combs: 50 Last Comb: X :‘S;:-':‘k‘f
+ (IP 28) (+ (IP 16) (IP 16)) 'o‘__ o
, Steps: 15 Combs: 50 Last Comb: + .'('s.":: "t"‘-:.\";{'
Pal Sl Sl
! ~+ (IP 28) (IP 32) o

f'.-
ALLLLL
LT,

Steps: 16 Combs: 50 Last Comb: +

- e,

60
60
‘ ... 0.
4 ) e '-'-__.-.'.'__.
4 Reductions . 16 RN AR
» LN I.J".. -
, SR AR
: Symbols Expanded: 0 PRSEOLRCRLY
Elapsed Time : 0.024553 secs EREAETN N
Reduction Rate : 651.651 RPS °®
. L mw N P
Size of result : 1 \:.i:;i'-:
» ?:':-‘:\f.-f:-"
L : Pt I
Combinations Constructed: 50 ~_".-$\$_ oo
Number of Stacks 115 :“::’:*M:‘-:
Stack Pushes 57 IRV VAV VAV
Stack References : 168 .:._,. . .:.'i
Stack Checks . 16 :.-:s.-,:::.-';_:
. . .‘ v‘
) Stack Modifications : 23 N “-..{:.-';.r-';:
. . FAENTD.
Maximum Active Stacks : 5 ::'-'P'::._‘-:a‘:.-
Maximum Stack Depth  : 8 NN
Maximum Active Cells : 18 ® ®
y IR TR ':\v“\
| Functors Introduced: 7 '\-{
ey
Steps  %Steps Functor ey
__________________ b\ - _--’_ -~
4 250 x ..
3 188 + S
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2 125 B
1 63 B
1 63 ¢
1 63 W
1 63 S

LNF of ?x whererec ?x = [1¢?y] & ?y == [2¢7x] is
Initial Expression
A-S OPDS 2 K (Y (APP-TO-ARGS 2 (B (C' OPDS (PAIR 1)) (PAIR 2))))
Steps: 1 Combs: 23 Last Comb: Y
A-SOPDS 2K
(APP-TO-ARGS 2 (B (C' OPDS (PAIR 1)) (PAIR 2)) (...))
Steps: 2 Combs: 28 Last Comb: APP-TO-ARGS
A-SOPDS 2K
(B (C' OPDS (PAIR 1)) (PAIR 2) (ARG 1 (...)) (ARG 2 (...)))
Steps: 3 Combs: 29 Last Comb: B
A-SOPDS 2K
(C' OPDS (PAIR 1) (PAIR 2 (ARG 1 (...))) (ARG 2 (...)))
Steps: 4 Combs: 31 Last Comb: '
A-SOPDS 2K
(OPDS (PAIR 1 (ARG 2 (...))) (PAIR 2 (ARG 1 (...})))
Steps: 5 Combs: 32 Last Comb: A-S
K (PAIR 1 (ARG 2 (OPDS (...) (PAIR 2 (ARG 1 (...))))))
(PAIR 2 (ARG 1 (OPDS (PAIR 1 (ARG 2 (_.))) (..))))
Steps: 6 Combs: 32 Last Comb: K
PAIR 1 (ARG 2 (OPDS (...) (PAIR 2 (ARG 1 (..))})
[t«ARG 2 (OPDS E0527 [2¢ARG 1 E0528])]

NF of ’x whererec ?x = [1¢?y] & Py = [2?x] is
1,2,1,20P0529]

NF of ?z whererec
?2 = bin-tree ?’x 'y &
?x = bin-tree 1l ?z &
?’y = bin-tree ?x 2 is
BIN-TREE (BIN-TREE 1 E0530) (BIN-TREE (BIN-TREE 1 E0530) 2)

NF of first 20 [1,..,100] is
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)

Reductions . 284

Symbols Expanded: 1

Elapsed Time : 0.315075 secs
Reduction Rate : 901.373 RPS
Size of result : 103

]

h
- ol
BN

»
Pd

&y
o a
RARA

L m e N’

ERAAAN
g
™
)
“'I 'l’

s
i
[l

L ]

3
}I
A
(N

s
2

l}s\
>

o

e IR Lt
IO ‘E-.“
L Y
e 35

‘,‘5

-‘”:' ‘.'
LA

A

5
7’
%Y

3
hY

oo

v
"
.
&

.z.v

I8
I

AR
P’y
e

NN
s

'y
[
&

P
‘-
h TPy
"‘\rﬂ"\
P

‘,‘..

]

e
rYALL LA g
P
Fl N

------

.,,',,
war

A AA
;l. "."

N A
"}',', ‘
’, f‘ P4

l' l.;

o
2

%

”

e
LolS

’,

"

o 0y

Y
LA
N
AR
.
A

-‘ l‘ﬂ' "

Oy
N7

A
;.'l-. [y
"‘IJS N

L
."" -’

P
<,
[d

W
e
s
.' .-’*}' y
hi /'Y
4'

'.{ \;.
a%SS
a"é 7
[ 4 ﬁ

R
S




oy Y Y onf * 3
I/ NN NN io'ad, - -y

Page 166

NF of first 20 [1,3,..,100] is
[1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39)]

NF of first 20 [1,3,..]) is
[1,3,5,7,9,11,13,15,17,19,21,23,25 27,29,31,33,35,37,39]

NF of first 20 [-10,..] is
[10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6.7,8,9]

NF of first 10 [1,1,..] is
[1.1,1,1.1,1,1,1,1,1]

X NF of for-each ?x€[1,..,10] nstantiate (X 20 °x) is
[20,40,60,80,100,120,140,160,180,200]

-

Reductions 0 32

NF of [(X 20 ?x)|?x€[L,..,10]] is
[20,40,60,80,100,120,140,160,180,200]

Reductions 1 32

NF of first 20 [[Px,?y]|Px€[1,.];?v€[L,.]] is
, [2.1],[1,2] (2,11, [3,1] (2,21, [1,3] (141, 2.3)[3.2], 4.1, [5.1],
-= (4,21, (3,30, (2,41, 1,5, [16],[2.5] [3.4].[4.3],{5.2]]

Reductions 2 377

NF of first 20 (for-each ?x€[1,..]

and-each ?y€[1,. ]

instantiate [?x,?y]) is
((1,1],(1,2],(2,1],3,1],[2,2],[1,3], [1,4], [2,3],(3.2]. [4.1].5,1],
[4.2],[3,3],2,4],[1,5],(1.6],2,5,3,4],[4,3].[5.2]]

Reductions - 377

Definition: (define (odd ?n) (not (zerop (rem ?n 2))))
ODD defined, functors introduced: 2.

NF of filter odd [1,..,10] is

(1,3,5,7,9]
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~
*
\
A’

: 53
. 244
1 527
. 86
1 137
1 14
7
: 53
’
»
>

: 1708.61 RPS
Functor

: 0.049748 secs

then 1
else (X ?n (fact (subl ?n)))))
: 85
. |
S
ZEROP
IF
c
X
SUBI1

(if (zerop ™n)
FACT defined, functors introduced: 7.

%Steps
24.7
12.9
12.9
12.9
11.8
118
118
12
~

N

Steps
21
11
11
11
10
10
10

1
“~

'-
e %
n

NF of map (filter odd) [[1,..,10],[2,4,..,20],(1,3,..,19]] is

((1.35,7,9],[ ,[1,3,5,7,9,11,13,15,17,19]]

S (C' IF ZEROP 1) (S X (C B SUBI1 E1253))
Combinations Constructed: 76

Number of Stacks

Definition: (define (fact n)
Stack Pushes

Symbols Expanded: 1
Maximum Active Stacks
Maximum Stack Depth
Maximum Active Cells
Functors Introduced: 0

Elapsed Time
Reduction Rate
Stack References
Stack Checks
Stack Modifications

LNF of fact 10 is
Size of result

LNF of fact is
3628800
Reductions

Salta Ty A 4
“ bnn-v---'h.-w--—it- A
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LNF of fact 100 is
93326215443944152681699238856266700490715968264381621468592963895
21759999322991560894146397615651828625369792082722375825118521091

. 6864000000000000000000000000
Reductions : 804
) Symbols Expanded: 1

: 0.62608 secs
: 1284.18 RPS

Elapsed Time
Reduction Rate
Size of result : 1

LNF of fact 50 is
30414093201713378043612608166064768844377641568960512000000000000

Reductions . 404

Symbols Expanded: 1

Elapsed Time : 0.28939 secs
] Reduction Rate : 1396.04 RPS
; Size of result : 1

Definition: (define (apply-each-to ?x) (map (M (?f) (?f ?x))))
APPLY-EACH-TO defined, functors introduced: 2.

f NF of apply-each-to is
B MAP R

LNF of apply-each-to
16
{ [square,
double,
(X (?x) (- (square ?x) (double ?x))),
! K 37774,
fact] is
[R 16 SQUARE+MAP (R 16) [DOUBLE,S' - SQUARE DOUBLE, K 37774, FACT]]

Reductions 12

Symbols Expanded: 1
Elapsed Time : 0.079325 secs

Reduction Rate : 25.2127 RPS
Size of result : 30
. _ . T AT A At e e e e e e B a tp %k S e -
o e A A st A L O AT T N NI T NN I T
., Sl LN S v LIS A
T B I A s A N N N A A N N N CRANAN TN NN AN ANGt A
SN SNV SIS P ML "y A IE WV LS O SR A W X Fat L)

".-:J )
F )

;'.. h B
"-"-;-‘é:'.
e

Yle'y

PN
A

..
2ol
'5‘.
Ly

‘{

4

L]

‘r
L

®

@
N
* 1
.
(A
I
[]
l'(

‘
a
"
fl‘f
Pl

R

A

o o o |
"‘ h
g 'y
D)
~A

5 %5

s
5 &,

:‘,\‘,

-

L7

y.'-\.‘.
."-.’-

%SNS

 J

vt
v g r N
LIy
AR
P

o &

A 2

B

e
e
tely s
n_v

w
LA

MO
Selplelele s,
% RRORR
PPN

-'yn' P
'I

P RAKAS
<,
o

P
2
<
S

%
s

N
1]

h
. 'l »

[}

F4
R
S

249

PP

b
X
LY
o
X
Fe et

\‘.’v"r
PN
7
g

o’
<,

LIS
"

s

:,:-'\
Ped

”
L/

S5 “
bt
i

.,
?
r."
>

‘::
f‘f



l“.' R R RORER I OV R LS Iy 9 o Al e et (A M A SR ion b e 0" Al Bl ol g a® el i A et e 4 Mt

e
'y
'y
d Page 169
2
) \
e
W NF of apply-each-to
16
b [square,
".., double,
B (: (™x) (- (square ?x) (double ?x))),
b K 37774,
X fact] is
N [256,32,224,37774,20922789888000]
W .
A~ Reductions : 158
&
- Symbols Expanded: 6
. Elapsed Time : 0.274288 secs
ye Reduction Rate : 576.037 RPS
Wy Size of result : 25
¥
i
N NF of Members of apply-each-to
16
;) [square,
v double,
1 (M (™x) (- (square ?x) (double ?x))),
K 37774,
r fact] is
l 256322243777420922789888000
b
N Reductions : 155
e Symbols Expanded: 6
N Elapsed Time : 0.118786 secs
‘o Reduction Rate : 1304.87 RPS
O Size of result : 25
o~
‘e
" NF of naturals-modulo-n 5 is
. 0,1.2,3,4] °
o "\'F-I'F'-"
o , AT
N Reductions 1 282 AN
‘o A g
’1 Ca e N N
[/« Symbols Expanded: 13 j\,ﬁ O
Y Elapsed Time : 0.628656 secs e
K Reduction Rate : 448.576 RPS IR
) ‘ Fou i
" Size of result : 36 ,«;.,ﬁ-. )
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L5, @S] @ TR o ABEORS o BVEINEY & WTNEID o, @ YRR e M ol @ VAR L et
AU OuR [/ L, <90 Y AR PN RO Y AT X AR A LY
AT A AL AR - A AN R A A AR R I R L A A L e _ AR IR
e NSRANEN PESSSSRE PN o WL 2 A0S CAANRNAN saas TS PRI AR
P Al R o A A A G PR ™ ] Pl bl S Pr I E " oL ooty o
R Pl A e T B REEFL L La  PELLIEL A LT S LEERATON RO LS ”
P R T ) .ra-J ot ey St e ‘etvaty WSl s e S e g s a5y ., ) SR Y
O LA AN I AL A S £ 901 s AP SRR AR AN L L2 SO LT e @ I @ AN s s e
7% ONSNINN (@ S OPNSIN @ PTG @RI, @, @ SEINNG ORI O @ [ AR

P S

: 0.585012 secs
: 1270.06 RPS
: 61

: 0.121806 secs
: 1067.27 RPS
: 0.50672 secs

1 1247.24 RPS
- 0.581089 secs
1 1254.54 RPS

-

1 743
: 130
: 61
1 632
1 61
1 729
65
Nty
N

LA A AN
. Rate

.
N

Elapsea

Symbols Expanded: 25
Elapsed Time
Reduction Rate
Size of result

N

,'.'_

NF of first 10 integers-rep2 is
Reductions

NF of first 10 integers-repl is
[0-1,1,-2,2-3,3,-4,4,-5]

NF of first 10 naturals is

[0,1,2,3,4,5,6,7,8,9]

NF of first 10 naturals is
[0,1,2,3,4,5,6,7,8,9]
[0,1,-1,2,-2,3,—3,4,-4,5]
Symbols Expanded: 13

Symbols Expanded: 23
ime
Elapsed Time

Page 170
Reductions
Reductio
Size of result
Reductions
Symbols Expanded: 2
Elapsed Time
Reduction Rate
Size of result
Reductions
Reduction Rate
Size of result
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)
3
i)
;:. 1 NF of first 10 (powers-of 2) is
b [1,2,4,8,16,32,64,128,256,512]
I‘
,,:: Reductions 1 742
2
k5 Symbols Expanded: 23
o Elapsed Time : 0.537465 secs
- Reduction Rate : 1380.56 RPS
. v Size of result : 61
\vl
_"\ NF of higher-order-example-mod 4 is
L [[011[0’1’213]]
"W Reductions : 410
ey
':': Symbols Expanded: 16

4

Elapsed Time :0.299072 secs
Reduction Rate : 1370.91 RPS
Size of result : 40

N ?

- R Cu®
& A

o~ NF of perms [1,2,3]] is N

R [[1,2,3),[2,1,3},[2,3,1),[3,2,1],[1,3,2].[3,1,2]] OGN

*

°
o NSRS
NF of first 10 (closure-under-laws [append [1]] [[2]]) is t;::::f‘-‘
.j [[2]'[1'2]'[1’1!2]t[1!1!1!2]’[lx17111)2]7[111y1y111!2]y ::v‘:rw
; (1,1,1,1,1,1,2},(1,1,1,1,1,1,1,2],[1,1,1,1,1,1,1,1,2], RN
v [1,1,1,1,1,1,1,1,1,2]] h‘-ﬂf_\ 4
V-, [P R
N NF of R
‘. NF of first AT
o 10 Ny
. "'_: (closure-under-laws OIS
[a.ppe.nd (1),append [3],rotate] T e
(2] is N
5 [21,01,21,3:2)1,1,21,(1.3,2],(3.1.2) [211,8.3.2, S
- (2,3],(1,1,1,2]] RN
e RN
’:l’ .‘-\.-:\’t.-. )
i ::"' :'.'._'x‘:_g:‘; -
o PRy
< MATSSAN
: S
o N e .
I<- ’.I’ \‘.“ '-.i
L, IR
]
’
N
>
)
]
e o

R A AR R A AN
»,

\'_\:(,\:P\} e R TR " '; ’ v ’ . -; A " "_g LG
A e A T v 3 Pt Lt Sy AU ALl AN SN
¥y PP, " . BADAS . iR S T AN A N <
-‘5"‘9"' 30 SN SNISEI SO 'f*f"I\J”frII*I*n':ﬁ 9 "s"\‘,:""-."-.”x"'\q; R NN ’:" ".': '\"::" N oy
S O T e AN Y e o S e y ‘

=




" na gta ain 8 ate 0 08 g Vg e g Tap by A NS, i phe A LD SRS AR R R Aa* e M e ite® fat Sa ael A AMEIAR AL Mg

AR AL A
! AR AL
: RS
Page 172 _:'5‘\"‘:"
;.\_;._:.\_;\,:n,
NN
NF of first 20 (g-seq 1 0.5) is .;:::‘::_'.r:;"
[1.0,0.5,0.25,0.125,0.0625,0.03125,0.015625,0.0078125,0.00390625, :‘;:::-fh" '
0.001953125,0.0009765625,0.00048828125,0.00024414063, ®  ®
0.00012207031,0.000061035156,0.000030517578,0.000015258789, .:\,:,,::Q&: ,
0.0000076293945,0.0000038146973,0.0000019073486) ‘;:‘.-1\:: l|"
Reducti 522 :53&.‘5‘?{;: |
eductions : K )
Symbols Expanded: 3 L :,\
Elapsed Time :1.23927 secs ::.::'_.:-.:.:::x-.:.,;
Reduction Rate :421.214 RPS NN N
Size of result : 123 ::,}:.:-_.:::.:::h}
ST
»'.- - S Cats
® ®
NF of first 20 (series (g-seq 1 0.5)) is RNy
[1.0,1.5,1.75,1.875,1.9375,1.96875,1.984375,1.9921875,1.9960938, :'\ﬂ::\,’h 3
1.9980469,1.9990234,1.9995117,1.9997559,1.9998779,1.999939, :::v:::v“w',\
1.9999695,1.9999847,1.9999924,1.9999962,1.9999981] A
A Ay
NN
Reductions : 719 . .°.
NI
Symbols Expanded: 5 :.;::.::;::-_.:::
Elapsed Time :0.577644 secs ::.:_:::}_.;__.-".’:
Reduction Rate : 1244.71 RPS R
Size of result : 123 . e ;"‘
AERASAREN
AR
o . . . RN
1 NF of limit-g-series (series (g-seq 1 .5)) is SN ]
2.0 N n“:)?“- o ,
RN
. l‘"‘- -".‘ '.\\’i
Reductions : 58 Py °
:'_C-;':',Q:EQ'}C‘SC
Symbols Expanded: 6 ARG
. x d'*f CaCa
Elapsed Time : 0.04127 secs "N ,;-:.-‘;;-.‘ ':
Reduction Rate : 1405.38 RPS 5

DAL
A

Size of result : 1

L
1

",

L

5
Py
e
55

NF of first-close-to-limit (series (g-seq 1 .5)) .0001 is
[15¢1.999939]
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Reductions : 947

~
-.’].
S &
Oy
Pl )
[N

Symbols Expanded: 23

Elapsed Time :0.523747 secs
Reduction Rate : 1808.12 RPS
Size of resuit : 8

LY
l‘.
Y
"

DRSS

TR

".,‘.\
)

2

%
f:. “
Iy
B

<N

el

%
'a\ .
{"“,'

PR
]
-

.i.
-.‘10

LA
A

.

A TR T T Y
P AP A 4
"'-l,\':."-.\
AR R RN
Pl X ol )
€ A, 8 e,
P A0 4
% e

o

“§
o
I d
-
Y
a
5

LY
)
oo

RN A S U S A e S S A AR T C A C A AL S AT AR R S TS AR LY
:.F:.r - -:"\J{:)“.‘\«"NJ' AN PO AC AL AL AL AT N > ,3-_ ,_-f*_.:_‘}_‘.'. $\§ e,_w\:::'.\r‘)\.'\}_'.-
- L

. ASRNE SRR NN AR CY ‘k_} &: ANASLRCHS . A
- - 7 OO LR O N RS N AN S NN X o LSRR LRy AR
e AT N S A i G e e A L PR LRI G VGO v RO
LR 2T R BRGNS 'ri*-i\u&?i“-i‘i’rﬁhéxﬁ NSRRI adataalainial:

Cd



-'$.' MO 00 P % % ™ R L W WL Aratatat tyt e St DR S0 AL LA SAE L A 2 oA L 1 1t a e gie T gt S it atie oty oAt e b '.”:?.‘;'.W
: e
Ha

~ Page 178

-,

o
v,

'.: NF of first-close-to-limit (series (g-seq 1 .5)) .000001 is
wa [21+1.999999]

X Reductions 1 1319
3 £
e Symbols Expanded: 29 ha'g

. Elapsed Time :0.733449 secs PR NN

3 Reduction Rate :1798.35 RPS o ‘o
0y Size of result : 8 ‘?ﬁ:::,?’:i’j
) N ‘ '\‘":"&-ﬁ\‘

N A

o AT

’ N NF of first 20 (g-seq 1 0.75) is ’.::;\:-.

y (1.0,0.75,0.5625,0.421875,0.31640625,0.23730469,0.17797852, e’

0.13348389,0.100112915,0.07508469,0.056313515,0.042235136, .

. 0.031676352,0.023757264,0.017817948,0.013363461,0.0100225955, ]
g:. 0.0075169466,0.00563771,0.0042282827] o el v

:‘,l' G g

'l::. DN

v NF of first 20 (series (g-seq 1 0.75)) is i "".""

> . [1.0,1.75,2.3125,2.734375,3.0507813,3.288086,3. 4660645, T
.‘-: 3.5995483,3.6996613,3.774746,3.8310595,3.8732946,3.904971, S " y
“_:- 3.928728,3.946546,3.9599094,3.969932,3.977449,3.9830866,3.987315] Ny
'-F:

’.

. NF of convergent-g-series (series (g-seq 1 0.75)) is e
- TRUE :'.{':-::.:::»: "
- NI
o RN T N
v . . . . ~':" - .\"\i'\
. NF of limit-g-series (series (g-seq 1 0.75)) is YA
= 4.0 RN

h ®

. ] \-:..-_‘-'

~ .. . A
~. NF of first-close-to-limit (series (g-seq 1 0.75)) .000001 1s NN

:r,' [543.999999) AN

P : 'fta,‘e,\.'
.\.. A A A
NF of first 20 (g-seq 1 0.9) is “ale e le
-~ (1.0.0.9,0.80999994,0.7289999,0.6560999.0.5004899,0.531.4409, TS
0.4782968,0.4304671,0.3874204.0.34867832,0.31381047 SO
- 0.28242943,0.25418648,0.22876783.0.20589103.0.18530193, NI
0.16677174,0 15009455 0.13508509] AR
v, N
o NF of convergent-g-series (series (g-seq 1 .9)) is AN,
¥ TRUE RS
w RSO

' *’ ::~::-'t S

[ O
.. NF of limit-g-series (series (g-seq 1 0.9)) is - . b o1
- 9.999998 Seel T
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B e N R R e e R e N N N

'f::’:"":“-':’ ::-;:f;;:a:?-‘;-\.:\ PRt ":;&':,:: <o




Sl A A G A A A Sl A AL Sl i S ‘I.".’.?’T’.' PaA
- ﬂ_' v
P I N

o
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o
NF of first-close-to-limit (series (g-seq 1 0.9)) .01 is N

hi'
[66+9.990447) 27

Reductions : 4109

o

:
r
3

5_‘::: 3 PR
AN
! .;'; < g}
"&E?;.ﬂ:

e,
\?"
ogf

Symbols Expanded: 74
Elapsed Time :2.24123 secs
Reduction Rate : 1833.37 RPS

Lt
P4

Size of result : 8 -?—__—.ﬁ-r:*"?
SR E R Y
AN
et
NF of first-close-to-limit (series (g-seq 1 .9)) .001 is :.:\?:
[88+9.999056] N
o
Reductions : 5473 ‘\‘.'
AR
Symbols Expanded- 96 :::-:}::
Elapsed Time : 2.9093 secs ‘,\, R
Reduction Rate : 1881.21 RPS TN
Size of result : 8 b .'_.:.{.,
' ".'::.-.:f:'-":
s '. f"l.
. . : :‘;s_.:;_.:&,._
NF of first-close-to-limit (series (g-seq 1 .9)) .0001 is ..:._:..-:._ﬁ.,:_-
[11009.999903] RO
. o @
Reductions 1 6837 AN AN A
ALY
Symbols Expanded: 118 ::':'\-;:'{:-
Elapsed Time : 3.64072 secs ':I::!.\'-F::f.'-
Reduction Rate : 1877.93 RPS NI
Size of result : 8 °* __°
PO VA
NN
NF of first 20 (g-seq 1 -0.5) 1s \:'\:\
(1.0,-0.5,0.25,-0.125,0.0625.-0.03125.0.015625.-0 007TR125 ORI
0.00390625,-0.001953125,0.0009765625 -0 000-§852%125 .0 00024411063, " :

-0.00012207031.0.000061035156.-0 600030517575 0 DOOOTH2HNTRA,
-0.0000076293945,0.00000381-46973,-0 000001907 3 1x6)

NF of first 20 (series (g-seq 1 -0.5)) is
(1.0,0.5,0.75,0.625,0.6875,0 65625.0 671875.0 5610625 0 H6TIENTS.
0.6660156,0.6669922 0 6665039.0 66671805.0 HH6E626.0 BEEORTY
0.6666565,0.66667175.0 6666641.0 6666679.4.0 BEHEE603]

Definition (define (u *x) [*x])
[ defined. functors introduced |
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NF of length [1,2,3,4] is
4

Reductions - 40

Symbols Expanded- 1

Elapsed Time : 0.060226 secs
Reduction Rate 664 165 RP=
mize of result 1

N\F ~f map length {[ ],u 1,[1,2],{1,2.3.4]] .-
0.1.2.4]

Reductions %5

Symbols Expanded 3

Elapsed Time 0 073885 secs
Reduction Rate 1130 44 RPN
Size of result 27

Definition (define (concat *x)
(if (nullp *x)
then []
else (append (hd ’x) (concat (tl ’x1))})
CONCAT defined. functors intredueed

NF of concat [[1,2],(3,4],(5,8] «
(1.2.3.15.6)

Definition. (define (compose *flist *x)
(if (nullp *flist)
then ™x
else (compose (tl *flist) (hd *flist °x))))
COMPOSE defined, functors introduced 10

NF of compose [+ 3,* 2] 5 is
16

Reductions - 31

Symbols Expanded: 1

Elapsed Time : 0.021201 secs
Reduction Rate : 1462.2 RPS
Size of result : 1

.'. ~.h'..-..' $'~
o Syt g
'y t- f:'l

g
" my N o % e

R
T W
NN s J,'\

[}
.’ﬁ:\ %
H
4
LY I'h 5
)
(‘fyfﬁl’ 0

PR,
h]
-
Z

e T
Pl

"Iﬁa‘

‘ f'. L4

Lo

%5 %

e

v.r,
of
S
L,

@ 7y

h)

e
[ ""
R

s
>
N

3

o
&N
%X
L o

5 %
v o
P o g}
SRy
'&.;S .‘ ,:',_-

)
'.E-.E '
\ 1;,:1,_

¥

'.}"i

5'1:'
PR
s

v’

uy
&
syNe vy

r 2
hh)

\.\ 'I
4

v

[] ll “
]
202
& &
":‘_.-s:‘
)

ATy
1] l\I‘As

N
oy
AN
vy

(S q

N

"

x

R
ox

LA
S
.-'-

.
e,
.
3

P
<V
Ve
PN A
R

L T

/
wfolalals
5\

LAY

v
%
Ly

*5

/
/

'Y

’®

%

’1

A
55

P ;:I\
':' %

e
'

Lo -.f‘-
P4
.’:f ’

Y, }:

[

7\ p

. I.‘ )"I

-'("
5 %
hY
L)
S

;i
»

L,
s

K
2
I\

-
o
&
.'n:.f
e e NS @

»
<

e,
S
)

P
-' .“'s
P/
YAy

'

fo 's
P
-

A ]
B4

> v
»

.
DRt
»

AR
»

h
[

TN
-‘l-

l‘-i‘.l..

PR

et l',ls,l)l.
ettt ."-,-
'.l 4 l.'

n{&{‘l-. 2

PP ]

‘a :"s

ANNS
P

O X
e
AL

i aae
v
P RN I,

z .‘_'.(
)
I'e
L4

»
AP
'

»
]

N
AR

(4
7.
»
\'\v b

)
5
' S
v
s

P
5

o
]

L
=

I.'.’
s".

rd
LA,

g
)
=



NF of compose is
S{B' SIF NULLP) (S (B’ B E9934 TL) HD)

Definition: (define (sumtree ?x)
(if (atomp ?x)
then ™x
else (sumlist (map sumtree *x))))
SUMTREE defined, functors introduced 6

NF of sumtree {1,[{2,3],4] 1s
10

Defimtion (define (maptree ?f 7x)
(if (atomp ?x)
then (*f ?x)
else (map (maptrec ’f) 7x}))
MAPTREE defined. functors introcned

NE of maptree s
S S (S"IF ATOMP) (B MAP E2654)

NF of maptree square [1,{2,{3,4],5]] 1s
[ [4.[9.16).25]]

Definition (define (revtree x)
(if (atomp *x)
then *x
else (reverse (map revtree v}

RENTREE AdAefined funetor<sante du ood 6

NEoof revtree [1,(2,{3,4],5]] =

[[5.[4:3) 2].1]

Definition (define (exists *p ?x)
(if (nullp *x)
then false
else (or (*p (hd ?x)) (exists ’p (tl ’x)))))
EXISTS defined. functors introduced: 12
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R
N de,
NF of incl [1,2,3] [3,5,4,2,8,1] is A O
TRUE e
o
Wyle v,
Reductions 207 . O
s
Symbols Expanded: 6 N
Elapsed Time :0.116783 secs
Reduction Rate : 1772.52 RPS
Size of result : 1
Combinations Constructed: 248
Number of Stacks : 103
Stack Pushes : 644
Stack References - 1408
Stack Checks 1 238
Stack Modifications 0 326
Maximum Active Stacks : 11
Maximum Stack Depth :7
Maximum Active Cells : 41
~f‘
P ﬁ Functors Introduced: 0
"-';
e Steps %Steps Functor
W emeee  weeees ceecee-
30 145 C P
7 29 140 S e
26 126 B TN
. A
2 15 72 IF TTRIRTN
~? 15 7.2 NULLP PSS!
o REGE SRS
\7 14 6-8 HD .
. 14 6.8 B’ PR A/
RGCATAS
&4 14 68 & Sl
S 11 53 TL e \s‘
- 11 53 OR WD
11 5.3 =
2. 3 14 AND
\I
":' Detinition: (define (equalset ?x ?y)
~ (and (incl ?x ?y) (incl ?y ?x)))
- EQUALSET defined, functors introduced: 3
v
Y
W
.
o
"-_;'
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xe
LN
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Py
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NF of equalset (1,2,3] (3,1,2] is
TRUE

7

hY
Y
5
A

s
L4

e
i‘)
oY,

7

Reductions : 268

Symbols Expanded: 13

Elapsed Time :0.157473 secs
Reduction Rate : 1701.88 RPS
Size of result -1

NF of equalset [1,2,3] [3,1,2,2,3] is SN
TRUE

Reductions . 367
Symbols Expanded: 15

Elapsed Time : 0.207786 secs
Reduction Rate : 1766.24 RPS

- Size of result : 1
N
e NF of equalset [1,2,3] [3,1,2,2,5] is
K FALSE ‘
» ®
o . '_'a'.'f\d'. L
~ Reductions : 367 AN N
N N A
. AN
5 Symbols Expanded: 15 ARSI
) Elapsed Time : 0.198647 secs "‘:-"::’::-’::‘
o Reduction Rate : 1847.5 RPS : ne ;"
v Size of result : 1 PRSKSCRAN Y
. RV,
‘ FpS Yo B
. -'.- - \J‘-..'.'?
- Definition: (define intersection (B filter belongs)) -:.\,-::-:-\:::"‘_
o INTERSECTION defined, functors introduced: 0 s
)
; , RSN
L, NF of intersection (1,2,3,4,5] (3,4,5,8,7] is :::.::.::.::
/. [3.4.5] A
) \l‘\-'\-“\:‘.‘
7 . \ \.~:‘4-\.r"‘
v Reductions 343 !"\ - '.'\
. ORI
. Symbols Expanded: 7 :'::‘::':-::;‘:
: Elapsed Time :0.193531 secs RN
. Reduction Rate : 1772.33 RPS ALLSIREN
b, R TP Y A
Size of result : 13 ST
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Definition: (define difference
(compose [belongs,B not,filter]))
DIFFERENCE defined, functors introduced 0

NF of difference [1,3,5,7,9] (1,2,3,4] 1s
(2.4]

Reductions 251

Svmbols Expanded. 3

Elapsed Time 0.144971 sers
Reduction Rate 1731 38 RPS
Size of result 10

Detinition (define (union ?x y)
(append (difference ?y 7x) ?y))
UNION defined. functors introduced 4

NF of union [1,2,3,4,4] {2,4,5,8,1] 18
[3.2.4.5.6.1]

Reductions - 271

Symbols Expanded: 3
Elapsed Time . 0.186286 secs
Reduction Rate - 1454 75 RPS

~ize of result 24
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